VARIATIONS IN OUTCOMES OF CARE IN URBAN AND RURAL NURSING FACILITIES IN MAINE
VARIATIONS IN OUTCOMES OF CARE
IN URBAN AND RURAL
NURSING FACILITIES IN MAINE

Andrew F. Coburn, PhD
Julie T. Fralich, MBA
Catherine McGuire, BS
Richard H. Fortinsky, PhD*

Maine Rural Health Research Center
Edmund S. Muskie Institute of Public Affairs
University of Southern Maine
96 Falmouth Street
Portland, Maine 04103

* Division of Internal Medicine, Department of Medicine
Case Western Reserve University

Working Paper #2

December 1994

Funding for this study was provided by the Office of Rural Health Policy, Health Resources and Services Administration, DHHS (Grant #000004-02). The views expressed are the authors’ and no official endorsement by either the University of Southern Maine or the funding source should be inferred.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

EXECUTIVE SUMMARY ... ii

I. INTRODUCTION .. 1

II. BACKGROUND: PRIOR STUDIES ... 3

III. STUDY METHODS .. 9

 Data Sources ... 9
 Variable Definitions .. 11
 Analysis ... 15

IV. FINDINGS .. 17

 Characteristics of Rural and Urban Nursing Facilities ... 17
 Outcome Differences: Urban-Rural Facilities .. 17
 Study Limitations ... 21

DISCUSSION .. 23

REFERENCES .. Error! Bookmark not defined.5

APPENDICES
ACKNOWLEDGEMENTS

We would like to acknowledge and thank David Zimmerman, Director and other researchers at the Center for Health Systems Research and Analysis, University of Wisconsin for the use of the nursing facility quality indicators. The development of the quality indicators represent a significant contribution to research in this area and we appreciate the opportunity to use them in this study.

We appreciate the cooperation of the Maine Department of Human Services which has supported the development of the resident assessment data used in this study. We would also like to acknowledge the contributions of Patricia Dushuttle who provided research assistance and Donna Reed who handled administrative support and report production. The comments and suggestions of our Project Officer, Patricia Taylor from the federal Office of Rural Health Policy, Ray Coward, University of Florida, and other external reviewers are greatly appreciated.
EXECUTIVE SUMMARY

Widespread concern among policymakers, consumers and advocates over the quality of nursing home care led to a 1986 report by the Institute of Medicine (IOM) calling for sweeping changes in federal and state nursing home quality assurance systems. The federal Nursing Home Reform Act of 1987 (OBRA '87) adopted many of the key recommendations of the IOM report, including the development and implementation of a national uniform assessment instrument (RAI), the mandated use of resident assessment protocols (RAPs) by nursing facilities and the reorientation of the regulatory process to emphasize a resident-centered and outcome-oriented approach.

Federal and state regulators and the nursing home industry have accelerated efforts to improve care practices in response to OBRA '87. For those interested in rural health, very little is known about the quality of care in rural nursing facilities compared to their urban counterparts. On the one hand, rural facilities may have greater problems recruiting and retaining qualified professional staff, particularly in the rehabilitation fields, which could negatively affect quality. Similarly, rural facilities may have difficulties recruiting and retaining qualified nursing staff needed as nursing care in the nursing home becomes more “technical” with the increasing debility and medical fragility of nursing home residents in many states. On the other hand, the quality of life for residents in rural facilities may be enhanced by the highly familiar and personal nature of life in smaller communities and nursing facilities.

This study describes variations in facility and resident characteristics of urban and rural nursing facilities in Maine and examines differences in conditions and outcomes of care. The outcome and resident status measures used for this study were developed as a set of “Quality Indicators” by the Center for Health Systems Research and Analysis at the University of Wisconsin-Madison as part of a national Medicaid and Medicare Case Mix and Quality
Assurance Demonstration funded by the Health Care Financing Administration. Ordinary least square regression equations are used to estimate the relationship between 57 Quality Indicators (measured at the facility level) and rural or urban location of the facility, controlling for resident, facility and market characteristics and other factors that may affect quality.

Study results reveal few significant differences among rural and urban nursing facilities in Maine in the incidence or prevalence of a wide range of conditions and outcomes encompassed by the quality indicators employed in this study. These results suggest that there is little basis for assuming, a priori, that rural and urban facilities differ with respect to nursing home quality. Although these findings provide some reassurance that the quality of nursing home care for rural and urban residents is comparable, our understanding of quality variations and their determinants remains quite limited and caution should be exercised in interpreting the results of this study. Information about whether and how rural and urban nursing facilities differ in their patterns and outcomes of care will be increasingly important as states and the federal government move toward a more targeted nursing home quality assurance process. While there is nothing in the findings from this study to suggest that rural or urban location, per se, should merit special attention in the survey process, further research is needed to understand more fully how differences in the characteristics of rural and urban facilities not measured in this study may affect quality and care outcomes.
I. INTRODUCTION

Policymakers, consumers and advocates have been concerned with the quality of nursing home care since the mid-1970s when investigative reports and state-specific studies uncovered widespread evidence of inadequate care (Vladeck, 1980). Interest in the quality of care delivered in nursing homes grew rapidly following a 1986 report by the Institute of Medicine (IOM) which called for sweeping changes in nursing home quality assurance. A year later, the federal Nursing Home Reform Act of 1987 (included as part of the Omnibus Budget Reconciliation Act of 1987, P.L. 100-203) adopted many of the key recommendations of the IOM report, including the development and implementation of a national uniform resident assessment instrument (RAI), the mandated use of resident assessment protocols (RAPs) by nursing facilities, and the reorientation of the regulatory process to emphasize a resident-centered and outcome-oriented approach.

Federal and state regulators and the nursing home industry have accelerated efforts to improve care practices in response to OBRA ‘87. Among the major quality problems identified in the IOM report were inadequate resident assessment and care planning, particularly for residents with the potential for rehabilitation, inadequate staff training and supervision, and lack of attention to resident rights. The new OBRA ‘87 provisions include a national, uniform resident assessment instrument, new requirements for staff training and significant modifications of the nursing home quality assurance survey and inspection process administered by the states.

In spite of these significant policy and regulatory responses to the problem of assuring nursing home quality, there remain significant shortcomings in our ability to define, measure and interpret variations in nursing facility quality. Although there has been substantial progress in the development of quality measures, we still do not fully understand how and why quality

Understanding more about whether and how quality of care may vary among urban and rural communities is particularly important since nursing facilities tend to be the dominant providers of long term care services in many rural areas (Shaughnessy 1994). Concerns about the quality of rural health services generally but particularly, hospital services, have tended to focus on the difficulties rural facilities may have in maintaining standards of care for certain services due to the low volume of such services or to the availability of specialized, technical support personnel or services (Hart, et al. 1990). Similar concerns may apply to nursing homes which are increasingly caring for sicker, more frail populations as a result of changes in hospital and nursing home care practices and payment policies (Ireland 1991). On the one hand, the quality of services provided in rural nursing facilities may be compromised by limitations in the availability of new technologies and the greater difficulty in rural areas of educating, attracting and retaining nursing staff as well as consultative and/or ancillary staff such as rehabilitation therapists or mental health professionals. On the other hand, the quality of life for residents in rural facilities may be enhanced by the highly familiar and personal nature of life in smaller communities and nursing facilities (Rowles 1994). While the scarcity of professionals such as physicians and nurses in rural areas is well documented (Frenzen 1994, Kindig and Movassaghi 1989), less is known about the availability of long term care professionals (rehabilitation, occupational, and physical therapists) and the potential effect of their supply on the amount and quality of services provided in nursing facilities. Nor do we have research providing empirical support for hypotheses of quality of life differences among urban and rural facilities.
This study examines differences in the conditions and outcomes of care among urban and rural facilities in Maine. The study builds on two recent developments in nursing home care and quality assessment --- the implementation of a uniform resident assessment instrument (Appendix A) and the development of “quality indicators” for use in examining differences in care between facilities (Appendix B). Uniform resident assessment data have been collected in Maine since 1990 as part of the national, Multi-state Medicaid and Medicare Case Mix Payment and Quality Assurance Demonstration (Case Mix Demonstration) sponsored by the Health Care Financing Administration (HCFA). This demonstration includes the use of a set of “quality indicators” developed by researchers at the University of Wisconsin-Madison which are currently being field tested for use by the demonstration states in the nursing facility survey and inspection process.

Section II of this paper reviews the research related to nursing home quality. The methodology for this study is described in Section III. The final two sections discuss our findings and their implications for policy and practice.

II. BACKGROUND: PRIOR STUDIES

In spite of the expanding and changing role that states and the federal government are playing in regulating nursing facility quality, our understanding of the factors that influence differences in care outcomes, including urban-rural location, is quite limited. In general, studies examining the relationship between nursing facility quality and other facility and resident level variables have produced inconsistent and inconclusive findings.

As in other areas of health care, the quality of nursing home care is typically conceptualized and measured along three major dimensions: structure, process, and outcome. Structural variables refer to those facility or market characteristics that affect the provider’s ability or willingness to deliver quality care. Structural measures include characteristics of the
physical plant, staff to patient-ratios, professional background of nurses and aides, and facility policy and procedures (Davis 1991; Spector 1991). There is, in addition, a growing literature on the relationship of competition in nursing home market areas to quality (Nyman 1988a, 1988b). Process variables, which until the recent passage of OBRA 87 were the focus of most regulatory policies, refer to the manner in which care is delivered and the adequacy of the staff available to deliver the service. Practices such as catheter care, restorative nursing techniques, skin care and organized activities are considered process variables (Spector 1991). Standards of care such as meal ratings, diet plans, and adequacy of nursing services, care plans, and rehabilitative services are also viewed as process measures (Davis 1991).

Outcomes of care are typically measured by changes in health status and may include discharge and survival rates, recovery and cure rates, and rates of functional improvement and decline. Other outcome measures, which do not indicate a change in health status, but suggest a high likelihood that substandard care is being provided, include certain preventable treatments or conditions, such as high prevalence of decubitus ulcers and high catheterization rates. Since nursing homes, by definition, provide care to individuals with chronic conditions and significant impairments, the use of outcomes, while generally preferred, must be approached cautiously. Outcome measures used in the long term care setting must take into consideration severity of functional and health impairment, co-morbidities and the potential for staff intervention to prevent or minimize a negative outcome.

Improving our knowledge and understanding of the factors that influence the quality of nursing home care is particularly important to those interested in rural long term care. Rural communities typically have a higher proportion of elderly than urban areas and thus, a greater per capita need for long term care services (Shaughnessy 1992). Nursing facilities have been one of the major providers available to meet the long term care needs of rural elders. Access
to services is often limited in rural areas by travel distances to receive services, reliance on public funding, cultural factors that may either favor or lead to resistance of certain types of services, and improper continuity and care coordination (Shaughnessy 1992).

It is well documented that rural areas generally have fewer physicians, nurses, nurse practitioners and other health care professionals available to them than urban areas (Coward et al. 1994, Coward et al. 1993, Frenzen 1994). Metropolitan areas had 2.3 times as many physicians per capita as nonmetropolitan areas in 1987 and the supply of physicians declines as the population of an area decreases (Coward et al 1994). Registered nurses are also under represented in rural areas, and nursing homes in particular may face shortages (Coward et al. 1994). While less is known about the availability of other health professionals, such as nurses aides, therapists (e.g. physical and occupational), social workers, mental health workers, etc, it is likely that geographic maldistributions exist with these professions as well, given the reliance of these professions on large populations to make practice economically feasible.

To date, the published literature on urban-rural differences in nursing home quality is minimal. Studies of long term care quality provided in rural hospital swing beds and research on hospital quality provide some insights, however, into the relationship between location of service and quality of care.

Swing Beds: In a comprehensive study of the quality of care in rural nursing homes and swing beds, Shaughnessy et al. (1990) found that swing bed care is more effective in enhancing functional outcomes, discharge to independent living and in reducing hospitalization for long term care patients. Swing bed patients were discharged more frequently, hospitalized less frequently and rehabilitated more quickly than patients in rural nursing homes. On the other hand, nursing home care appears more desirable than swing bed care for long stay chronic care patients with no rehabilitation potential. Based on visits to 50-100 rural nursing homes
throughout the country, Shaughnessy (1994) observed that rural nursing home staff appear to be more attentive to the functional and support needs of their residents and that this may be due to the culture of rural communities. Often, nursing home staff know the families of residents apart from the nursing home and it is not uncommon for the staff to have known the resident prior to admission (Rowles 1994). These findings point to the importance of understanding the mix of residents in a facility and the different patient care philosophies (rehabilitation versus maintenance care) that underlie the care practices in the facility (Shaughnessy et al. 1990).

Hospital Quality: Research into the role and performance of rural hospitals in the delivery of health care services is useful to examine as we further our understanding of rural nursing home quality. Many of the challenges facing rural hospitals are similar to those facing rural nursing facilities (Hart et al. 1990). These include a declining economic base, changes in Medicare and Medicaid payment systems, inability to keep pace with advances in technology, and availability of medical and professional staff (Shortell 1989). Whether these challenges and other related factors influence the quality of care in hospitals or nursing homes is still an open question, however. In a study of multi-hospital systems in the 1980’s, Shortell found that rural hospitals were less likely to be fully accredited and generally had fewer registered nurses per occupied bed than hospitals located in other areas. The ratio of actual to predicted death rates in rural hospitals was generally lower than in non-rural areas. The author cautions, however, that more refined adjustments for severity are needed.

In another study of physician and hospital factors associated with the mortality of patients, Kelly et al. (1986) examined hospital mortality rates for patients with certain conditions. Geographic location was not found to be a strong indicator of mortality rates in this analysis. Other studies in this area have shown mixed results (Kelly 1986). In general,
however, lower mortality rates are generally associated with hospitals that provide large volumes of similar surgical procedures (Kelly 1986).

As with the literature on nursing home quality, research on the relationship between hospital quality and urban-rural location is limited. Furthermore, the hospital quality literature tends to focus on mortality rates related to specialized procedures, especially surgery. While some analogies may be possible, our ability to draw too heavily from research in this area is limited by the differences in the mix of patients served, type of care provided and environmental milieu of hospitals and nursing facilities.

Determinants of Nursing Home Quality: Beyond the question of urban-rural location, studies have examined the effects of a variety of facility and resident characteristics and market factors on nursing facility quality (Davis 1991, Zinn 1993, Shaughnessy et al. 1990, Riportella-Muller 1982, Greene 1981, Spector 1991). Studies indicate that rural facilities are more likely to be not-for-profit and smaller than their urban counterparts (Shaughnessy 1994). The effect of for-profit status and profit-seeking behavior on nursing home quality has been the subject of widespread debate and extensive research over the last two decades. Despite concerns that for-profit facilities have an incentive to reduce costs as a way to achieve profits and that such behavior may be inconsistent with quality care, most studies using process and outcome measures of care have found no relationship between type of ownership and quality (Davis 1991).

Economies of scale and greater efficiency are generally associated with an increase in facility size. Other positive benefits that potentially accompany an increase in size may include an ability to attract and retain a broader range of quality staff, a capacity to provide inservice education, and greater administrative support of staff activities. On the other hand, smaller facilities may be able to provide more home-like care emphasizing quality of life and
comfort of residents. Like other studies of this complex subject, conclusions are difficult. In a study of code violations and complaints, Riportella-Muller et al. (1982) found that small homes had fewer violations and fewer complaints. Outcome measures such as discharges, mortality, patient functioning, life satisfaction and quality of life have been found to be unrelated to facility size; other studies have found lower patient ratings and greater resident isolation in larger facilities (Davis 1991). Zinn (1993) found large size to be associated with higher than expected pressure ulcer and restraint use in Pennsylvania nursing homes.

While staff to patient ratios are commonly used as structural measures of quality, few studies have examined the relationship of this input variable with outcomes of care. One study found a weak, negative relationship between staffing levels and likelihood of resident improvement (Spector, 1991). In a study by Linn et al. (1977), LPN and nurse aide hours were unrelated to patient outcomes. RN hours were negatively related to mortality rates and positively related to patient functioning and discharge rates.

Studies have generally shown that the proportion of public pay (Medicaid) residents is negatively related to nursing home costs; the relationship with quality of care has not been clearly established, however (Davis 1991). Nyman’s studies (1988a, 1988b) found more frequent regulatory violations in homes with more Medicaid residents, but no consistent relationship with resident care or quality of life measures. Nyman’s research (1988a, 1988b) has shown, however, that the competition for higher paying private residents may increase facility quality in markets with excess demand for beds. He notes that the relationship between the proportion of Medicaid residents and quality generally disappears when one controls for the degree of competition for beds in the area/market.

The study discussed in this paper breaks new ground in the area of nursing home quality research and the influence of urban-rural location on quality. While we can look to the
literature for analogies, this is one of the first studies to systematically examine quality differences in urban-rural location using both process and outcome measures of quality. The literature suggests that facility characteristics such as ownership control, size, and staffing, have a bearing on quality of care. Environmental factors such as supply of nursing home beds, availability of medical professionals and other staff may also influence quality and outcomes. The cultural environment or philosophy of care that permeates a nursing facility may also be critical but is difficult to measure. These are important factors to the extent that they influence the quality of life that residents experience in the nursing facility. They may be especially important in understanding quality differences between smaller and larger facilities and/or homes located in urban or rural locales. The reliance on the use of secondary data sources in this study precluded the development of data and measures on these admittedly critical dimensions of quality.

III. STUDY METHODS

Data Sources

The data for this study were obtained from four sources: a statewide, 100 percent resident assessment database, a nursing facility characteristics file, a health resources inventory file, and a nurse staffing survey. Unless otherwise indicated, analyses are based on data from 145 nursing facilities. Two-thirds (n = 100) of these facilities are classified as rural in this study; the remainder (n=45) are defined as urban facilities. Excluded facilities included state mental health facilities (n =2) and specialized head injury treatment centers (n=2).

Resident Assessment Data: The resident assessment data were obtained from the MDS + (minimum data set, plus), the designated uniform resident assessment instrument for nursing facilities in Maine. The MDS + includes the minimum assessment information required
by OBRA’87 as well as additional information, such as use of medications and rehabilitation services, that were included for purposes of the Case Mix Demonstration (Appendix A). The MDS+ is completed by facility nursing staff for each resident upon admission to a facility, whenever a resident is readmitted to a facility, whenever a significant change in resident status occurs, and quarterly and annually after admission.

Facility staff have been using the MDS+ as part of the resident assessment process since October 1990 when they were trained on the use of the instrument as part of the implementation of OBRA’87. Ongoing training has been provided to the facilities and their staff since that time in support of the Case Mix Demonstration.

The resident assessment data used to construct the quality indicators were obtained from the most recent assessment of all Maine nursing facility residents (private, Medicaid, Medicare and other) as of April 30, 1993. All initial assessments for newly admitted residents were excluded from the calculation of the quality indicators as it may be inappropriate to attribute observed conditions for these residents to nursing facility quality. Several of the quality indicators used in this study measure change in a resident’s condition. The two most recent assessments for each resident as of April 30, 1993 were used in constructing these indicators.

Nursing Facility File: The nursing facility file includes data on the characteristics of all Maine nursing facilities \((n = 145) \) such as size, ownership, chain affiliation, Medicaid share, occupancy, hospital affiliation and location obtained from the Divisions of Audit and Licensure within the Maine Department of Human Services.

Health Resources Inventory: The Maine Rural Health Research Center has developed a statewide inventory of health facilities, personnel, and services which can be linked with
Census and other population data for multiple geographic units. These data were used to construct nursing home bed supply rates for each of Maine’s 31 hospital service areas.

Nurse Staffing Survey: In 1993, the researchers conducted a survey of all nursing facilities to obtain information on the number of hours of licensed professional staff, certified nurses aides and medication aides employed by the facility as of the fourth quarter of 1992. A total of 106 facilities (73.0 percent) responded to this survey.

Variable Definitions

Quality Indicators

The quality indicators were developed through a systematic process involving clinical input and empirical analysis (Center for Health Systems Research and Analysis 1993) [Appendix B1]. Expert clinical panels were established covering the major disciplines in long term care, including nursing, medicine, social work, physical and occupational therapy, pharmacy, nutrition, speech pathology and medical records. The clinical panels reviewed the indicators for validity and clinical meaningfulness. Advocates and nursing home administrators were also included in the review process. Subsequent empirical analysis was conducted to narrow the list of possible indicators.

The quality indicators are grouped into 11 clinical domains and include both measures of prevalence (the proportion of residents in a facility with a particular condition) and incidence (those conditions that developed from one assessment to another). There are 31 core indicators. A subset of 26 of these core indicators are adjusted for the risk of developing certain conditions, bringing the total number of indicators to 57. For example, the prevalence of falls is a core quality indicator representing the proportion of residents in a facility who had a fall in the last 30 days. This core indicator has been further divided into a high risk and a low risk adjusted indicator. The high risk adjusted indicator includes only residents who have
conditions that increase the probability of falling (e.g., balance problems, unsteady gait, use of a cane or walker, the presence of dizziness or vertigo). The low risk adjusted indicator includes residents with none of the risk conditions. The purpose of the risk adjusted indicators is to take into consideration variations in the underlying functional and health status of residents with a particular outcome.

The unit of analysis for this study was the nursing facility. For each facility, we calculated the proportion of residents flagged for that indicator.

Independent Variables

Table 1 describes the definition, measurement and source of the independent variables used in this study. The location of nursing facilities as either “rural” or “urban” is the central variable of interest in this analysis. This study utilizes the Standard Metropolitan Statistical Area (MSA-Non-MSA) designation to define urban and rural location. Although population density and other alternative measures were tested to obtain a more diverse categorization of facility location, the resulting reductions in the number of facilities in each category made these approaches impractical. In Maine, MSAs include the cities of Bangor and Brewer, Lewiston and Auburn, Portland, and the Maine portion of the Portsmouth N.H. MSA (Figure1). Facilities located in all other areas are considered rural. It is important to note that while “urban” in Maine does not mean the same thing as in New York or other more urbanized states, the rural-urban distinction, as defined by MSA and Non-MSA location, are nevertheless meaningful descriptors of places that vary significantly in terms of population density, travel distances and times, and health resource and service availability and accessibility.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description/Measurement</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban/Rural Location</td>
<td>MSA-Non-MSA designations: 0 = Non-MSA (Rural); 1 = MSA (Urban)</td>
<td>Nursing Facility File</td>
</tr>
<tr>
<td>Number of Beds</td>
<td>Total number of Medicare and Medicaid certified beds</td>
<td>Maine DHS, Licensing and Certification Division</td>
</tr>
<tr>
<td>Hospital Affiliation</td>
<td>A nursing facility that is physically attached to a hospital</td>
<td>Maine DHS, Licensing and Certification Division</td>
</tr>
<tr>
<td>Chain Affiliation</td>
<td>More than one facility owned by common owner: 0 = Non-chain; 1 = Chain</td>
<td>Maine DHS, Division of Audit</td>
</tr>
<tr>
<td>Profit Status</td>
<td>For profit and not-for-profit [501 can(3)] status: 0 = Not-for-profit; 1 = For-profit</td>
<td>Maine DHS, Licensing and Certification Division</td>
</tr>
<tr>
<td>Occupancy</td>
<td>Total patient days divided by total available patient days (beds * total days in cost reporting period) * 100</td>
<td>Maine DHS, Division of Audit</td>
</tr>
<tr>
<td>Medicaid Share</td>
<td>Medicaid patient days divided by total patient days * 100</td>
<td>Maine DHS, Division of Audit</td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Hours Per Patient Day</td>
<td>Total nursing hours (RN, LPN and CAN) per patient day</td>
<td>Survey of 107 Maine nursing facilities – October-December 1992</td>
</tr>
<tr>
<td>Facility Case Mix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Mix Index</td>
<td>Mean Case Mix Index based on RUG-Ill groupings with Maine weights</td>
<td>Maine MDS + dataset as of 3/30/93</td>
</tr>
<tr>
<td>Market Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Home Bed Supply</td>
<td>Nursing home beds per 1,000 Supply population 65 and over in market area</td>
<td>Maine DHS, Division of Audit L</td>
</tr>
</tbody>
</table>
Figure 1
Metropolitan and Non-Metropolitan Statistical Areas in Maine

Produced by: Maine Rural Health Research Center 1993
Other facility characteristics used in this analysis include the number of Medicare and Medicaid certified beds (a measure of facility size), hospital affiliation (i.e., physically attached to a hospital), and facility ownership (profit or not-for-profit). Hospital-based swing beds are not included in this study as these represent a very small number of beds in Maine (n=37). In Maine, two or more facilities owned by a common owner are considered part of a chain. No distinctions are made between individual or corporate ownership or in-state or out-of-state control.

The variable, total nursing hours per day, is included as a measure of clinical inputs. This measure represents the sum of licensed hours per day (RN and LPN) and aide hours per day. Information on nursing hours was only available for 106 of the 145 facilities in the state. This reduced the number of facilities in our multivariate analyses. Because we found no significant differences in our multivariate analyses with and without the nurse hours per day variable, we only report findings from models with this variable included.

The mean case mix index for each facility was computed using the RUG-III classification system (Fries et al. 1994). This index uses case mix resource weights developed for use in the Case Mix Demonstration. These resource weights have been modified to reflect the salary scales for RNs, LPNs and aides in Maine nursing facilities. The statewide average case mix weight has been standardized to 1.00 with every facility’s case mix index expressed using this scale. The case mix index for each facility was computed as of March 30, 1993.

Analysis

This study uses single, point-in-time measures of the incidence or prevalence of specific quality indicators to estimate quality differences among rural and urban nursing
facilities. Two sets of analyses were conducted. First, ordinary least squares regression models were estimated that take the following general form:

\[p(\text{quality indicators}) = f(\text{geographic location, facility size, hospital affiliation, chain affiliation, profit/non-profit status, occupancy, Medicaid Share, nursing hours, facility case mix, and bed supply}) \]

Differences in quality may not be detectable across the full range of quality indicator scores; they may only be apparent at the extreme. To test for this possibility, we estimated a second set of equations in which facilities were identified as having quality indicator scores above or below the 75th percentile. Logistic regression was then used to estimate the effects of location on these re-grouped quality indicator scores with the other variables in the linear model above included as covariates.

In constructing these models, we were concerned with potential multicollinearity between facility size and urban-rural location and hospital affiliation and profit-non-profit status. In both cases, the correlation coefficients, though significant, were not sufficiently large (<.40) to warrant exclusion from our analyses. As indicated above, regression models were estimated for all 57 quality indicators.

The small number of cases (n = 145) may be a limiting factor in this study. As noted, information on nursing hours was available on only 106 of the 145 facilities in the study. To maximize our cases, we ran our regression models with and without this variable. Because the results of these models were nearly identical with respect to the effects of the geographic location variable, we have only reported here the results of the more specified models. Only significance levels at the .01 and .05 levels are reported.
IV. FINDINGS

Characteristics of Rural and Urban Nursing Facilities

As indicated in Table 2, over two-thirds (n = 100) of Maine’s nursing facilities are located outside of an MSA. Only facility size, as measured by the number of beds, distinguishes rural facilities from their urban counterparts. Rural facilities are more likely to be smaller, with 38 percent having fewer than 50 beds compared with 27 percent for urban homes. Although a slightly higher proportion of rural facilities are hospital-based and operate as non-profit entities, these differences were not statistically significant. Rural and urban facilities do not differ significantly in occupancy levels or the percentage of Medicaid residents. Total nursing and licensed nursing (R.N. and LPN hours) hours per patient day were slightly less in rural facilities, though the differences were not significant. CNA hours per day were identical. There were no significant differences in mean case mix between rural and urban facilities. Although rural facilities are located in regions with slightly larger nursing home bed supplies, these differences are not statistically significant.

Outcome Differences: Urban-Rural Facilities

Appendix Table 1 provides descriptive statistics for the 57 Quality Indicators (Qis) for rural and urban facilities. The bivariate results show significant differences (p<.05) among rural and urban facilities on only three of the 57 indicators: the Prevalence of Daily Physical Restraints (QI 27) and Incidence of Pressure Ulcer (QI 30) [Overall and High Risk]. The prevalence of daily physical restraints was 15.4 percent in rural facilities compared with 11.9 percent in urban homes. In contrast, the incidence of pressure ulcer development was lower in rural than urban facilities (3.8 versus 5.5 percent overall and 4.6 versus 6.6 percent for high risk residents).
TABLE 2
Nursing Facility Characteristics By Urban-Rural Location

<table>
<thead>
<tr>
<th>Facility Characteristic</th>
<th>Urban (N=45)</th>
<th>Rural (N=100)</th>
<th>Statewide (N=145)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Chain Affiliation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Chain</td>
<td>22</td>
<td>51</td>
<td>73</td>
</tr>
<tr>
<td>Chain</td>
<td>23</td>
<td>49</td>
<td>72</td>
</tr>
<tr>
<td>Hospital Affiliation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hospital</td>
<td>44</td>
<td>92</td>
<td>136</td>
</tr>
<tr>
<td>Hospital</td>
<td>1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Profit Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Profit</td>
<td>6</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>For Profit</td>
<td>39</td>
<td>74</td>
<td>113</td>
</tr>
<tr>
<td>Average Number of Beds *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-50</td>
<td>13</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>51-100</td>
<td>19</td>
<td>52</td>
<td>71</td>
</tr>
<tr>
<td>101+</td>
<td>14</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>Total Nursing Hours Per Patient Day</td>
<td>31</td>
<td>75</td>
<td>106</td>
</tr>
<tr>
<td>CNA Hours Per Patient Day</td>
<td>31</td>
<td>75</td>
<td>106</td>
</tr>
<tr>
<td>Licensed Hours Per Patient Day</td>
<td>31</td>
<td>75</td>
<td>106</td>
</tr>
<tr>
<td>Case Mix Index (3/9 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital Affiliated</td>
<td>45</td>
<td>100</td>
<td>145</td>
</tr>
<tr>
<td>Non-Hospital Affiliated</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Bed Supply (NFBeds/1000 pop 65+)</td>
<td>31</td>
<td>75</td>
<td>136</td>
</tr>
<tr>
<td>Occupancy</td>
<td>31</td>
<td>75</td>
<td>136</td>
</tr>
<tr>
<td>Medicaid Share</td>
<td>31</td>
<td>75</td>
<td>136</td>
</tr>
</tbody>
</table>

* Chi-Square = \(\leq .01 \)
In spite of the limited number of significant relationships at the bivariate level between facility location and the QIs, multiple regression equations were run for all 57 QIs on the outside chance that the effects of facility location could be suppressed by one or more of the other variables in our analytic models. The results of these regression analyses, shown in Appendix Table 2, reveal few significant urban-rural differences. The majority of the 57 equations perform poorly and do not achieve overall significance. None of the significant bivariate relationships noted above proved significant when other variables are controlled for in our multivariate equations. R-squared values for the equations range from 0.03 for Prevalence of Fecal Impaction (QI 11) and Low Risk of Bowel/Bladder Incontinence (QI 8) to 0.33 for Prevalence of Antibiotic-Anti-Infective Use (QI 13).

The effects of rural-urban location are significant in four of these models—Prevalence of Weight Loss (QI 14), Prevalence of Bedfast Residents (QI 16), and Incidence of Contractures (QI 19) - Overall and Low Risk (Table 3). In three of these models—Prevalence of Weight Loss and Incidence of Contractures(Overall and Low Risk)—rural facilities have lower rates than urban homes; the prevalence of bedfast residents is higher in rural than urban facilities. Overall, our confidence in these findings must be discounted by the lack of consistency between the bivariate and multivariate results and the failure of these models to achieve statistical significance.

To test the proposition that rural-urban differences may only be detectable at the extreme of the distribution of quality scores, we ran logistic regression models (not shown) in which we evaluated the effects of rural-urban location and other covariates used in the linear models on the probability that a facility would have QI rates above or below the 75th percentile. The results of these analyses were similar to those obtained from the linear models and showed no consistent pattern of urban-rural differences.
<table>
<thead>
<tr>
<th>QI 14 Prevalence of Weight Loss</th>
<th>QI 16 Prevalence of Bedfast (HR)</th>
<th>QI 19 Incidence of Contractures</th>
<th>QI 19 Incidence of Contractures (LR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-7.45</td>
<td>-0.38</td>
<td>18.72</td>
</tr>
<tr>
<td>Case Mix Index</td>
<td>21.42*</td>
<td>7.59</td>
<td>10.79</td>
</tr>
<tr>
<td>Nursing Hrs/Day</td>
<td>-0.56</td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>Chain</td>
<td>-2.03</td>
<td>2.89</td>
<td>1.25</td>
</tr>
<tr>
<td>Hasp Affiliation</td>
<td>-1.77</td>
<td>-5.92</td>
<td>-17.25*</td>
</tr>
<tr>
<td>Profit Status</td>
<td>2.28</td>
<td>-4.75</td>
<td>-6.67</td>
</tr>
<tr>
<td>NF Beds</td>
<td>0.04</td>
<td>-0.03</td>
<td>-0.00</td>
</tr>
<tr>
<td>Bed Supply</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>Occupancy</td>
<td>-1.35</td>
<td>-4.69</td>
<td>-2.59</td>
</tr>
<tr>
<td>Medicaid Share</td>
<td>2.08</td>
<td>17.61</td>
<td>-18.57</td>
</tr>
<tr>
<td>MSA</td>
<td>-3.58*</td>
<td>4.03*</td>
<td>-5.90*</td>
</tr>
<tr>
<td>R Square</td>
<td>0.13</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>F Value</td>
<td>1.34</td>
<td>1.89</td>
<td>1.18</td>
</tr>
<tr>
<td>Prob of F</td>
<td>0.22</td>
<td>0.06</td>
<td>0.31</td>
</tr>
</tbody>
</table>

* p < .05
Study Limitations

Studies of health care quality are rarely definitive and this research is no exception. There are several inherent limitations in the data and approach used in this study that warrant noting. First, the Quality Indicators used in this study are still being field-tested as part of the Case Mix Demonstration. Although their reliability and validity have not yet been established empirically, there are few, if any, nursing home quality measures for which these methodological properties have been established.

It is clear from the performance of many of our empirical models that our understanding of the factors that affect nursing home quality is limited. Studies evidence very inconsistent findings regarding the effects of facility and resident characteristics and environmental factors on nursing home quality. In the absence of empirical guidance from prior work, we have chosen to be inclusive rather than exclusive in constructing our multivariate models. Although we have been largely consistent with prior studies in doing so, our analytical models do not capture many of the environmental and contextual factors, such as nursing philosophy, turnover, training, communication, and staff attitudes, which are difficult to measure but which may be particularly important in determining nursing home quality.

Finally, our results are the product of a relatively small number of facilities in one state, and, hence, should not be overinterpreted. Notwithstanding these limitations, this study represents one of the first efforts to examine empirically the relationship between rural and urban location and nursing facility quality. As such, the study is intended to help establish a framework for future research on this important topic.
The question of how rural health care providers and facilities perform relative to their urban counterparts has become increasingly important as rural health systems face increasing financial pressure and as continuing shortages in health professional supply threaten the viability of some providers (Hart et al. 1990). Although many of the quality concerns have been directed to rural hospitals (Shortell 1989; Keeler et al. 1992), there is growing interest in research and policy circles in rural nursing facilities (Ireland 1991; Davis 1991).

As noted earlier, many of the hypotheses that have guided research on quality differences between rural and urban hospitals are likely to be inappropriate when used in comparing nursing facility quality. The two sectors differ markedly in the nature of care they provide. The care provided in nursing facilities involves considerably more nursing and custodial care in which the personal dimension of caregiving becomes a more critical factor in determining quality.

In the absence of research in this area, it is extremely hard to posit firm hypotheses regarding quality differences between rural and urban facilities. The results of this study suggest that there is little basis for assuming, a priori, that rural or urban location affects nursing home quality. Notwithstanding the caveats noted earlier, this study reveals no systematic differences among nursing facilities in Maine in the incidence or prevalence of a wide range of conditions and outcomes encompassed by the quality indicators employed in this study. Where significant differences were detected, rural facilities evidenced lower rates of weight loss and contractures among residents but higher rates of bedfast residents.

In a related study, Zinn et al. (1993) demonstrated in a sample of Pennsylvania nursing homes that larger facilities have greater than expected rates of restraint use and pressure ulcers. They argue that smaller facility size may enhance managerial control over care
processes and may promote a more personalized approach to care. The results of this study do not indicate any consistent relationship between facility size and the quality indicators.

Beyond size, however, there are other qualities of rural facilities and communities not captured in this study, that may be important in distinguishing rural and urban facilities and the quality of the care they provide. Factors such as the philosophy of care, and the involvement of family, friends and neighbors in the care provided in the nursing facility, which may differ in rural and urban homes, may contribute to more personalized care and improved quality of life (Rowles 1994). There is a need for further research on the contributions of these more qualitative factors to the quality of care in nursing homes in both urban and rural areas.

Implications for Policy and Research

Information about whether and how rural and urban nursing facilities differ in their patterns and outcomes of care will be increasingly important as states and the federal government move toward more targeted nursing home quality assurance processes. While there is nothing in the findings from this study to suggest that rural or urban location, per se, should merit special attention in the survey process, further research is needed to understand more fully how differences in rural and urban facilities may affect quality and care outcomes.

Changes in hospital admission and discharge patterns, together with the implementation of case mix-based payment systems and other nursing home policies designed to restrict the use of nursing homes to higher acuity residents, are all likely to affect nursing home case mix and the ability of homes to provide appropriate care. The difficulties of recruiting and retaining qualified staff may become a more critical problem for rural facilities, as an increasing proportion of nursing facility residents become medically complex or require more intensive therapy or rehabilitative services as a result of these policy changes. This
suggests the importance of continued research to monitor the impact of these trends on nursing home quality and outcomes. In addition, more work is needed to define and measure the qualitative dimensions of nursing home care and quality that are most likely to be related to the quality of life for nursing home residents and which may be particularly important in distinguishing between rural and urban facilities.
REFERENCES

Institute of Medicine (1986). Improving the Quality of Care in Nursing Homes, National Academy Press, Washington, D.C.

Kelly, Joyce and Fred Hellinger (1986). “Physician and Hospital Factors Associated with Mortality of Surgical Patients,” Medical Care, September, Vol. 24, No. 9, pp. 785-800.

APPENDICES
<table>
<thead>
<tr>
<th>Quality Indicator</th>
<th>Mean Rural (N=100)</th>
<th>Standard Deviation Rural</th>
<th>Range Rural</th>
<th>Mean Urban (N=45)</th>
<th>Standard Deviation Urban</th>
<th>Range Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prevalence of Any Injury</td>
<td>12.1</td>
<td>9.8</td>
<td>0 - 50.0</td>
<td>9.4</td>
<td>9.0</td>
<td>0 - 41.3</td>
</tr>
<tr>
<td>2. Prevalence of Falls High Risk</td>
<td>11.0</td>
<td>6.2</td>
<td>0 - 32.5</td>
<td>11.8</td>
<td>7.8</td>
<td>0 - 38.5</td>
</tr>
<tr>
<td>Low Risk</td>
<td>12.3</td>
<td>7.4</td>
<td>0 - 38.5</td>
<td>13.2</td>
<td>10.0</td>
<td>0 - 55.6</td>
</tr>
<tr>
<td>Prevalence of Problem Behaviors Towards Others</td>
<td>8.9</td>
<td>8.1</td>
<td>0 - 33.3</td>
<td>9.0</td>
<td>8.4</td>
<td>0 - 40.0</td>
</tr>
<tr>
<td>3. High Risk</td>
<td>29.0</td>
<td>14.4</td>
<td>0 - 61.4</td>
<td>31.8</td>
<td>14.9</td>
<td>2.7 - 62.7</td>
</tr>
<tr>
<td>Low Risk</td>
<td>11.0</td>
<td>12.3</td>
<td>0 - 53.3</td>
<td>16.8</td>
<td>15.2</td>
<td>0 - 70.9</td>
</tr>
<tr>
<td>Prevalence of Symptoms of Depression</td>
<td>17.6</td>
<td>15.6</td>
<td>0 - 50.0</td>
<td>18.1</td>
<td>16.2</td>
<td>0 - 71.1</td>
</tr>
<tr>
<td>4. High Risk</td>
<td>14.7</td>
<td>15.6</td>
<td>0 - 50.0</td>
<td>17.2</td>
<td>13.6</td>
<td>0 - 45.5</td>
</tr>
<tr>
<td>Low Risk</td>
<td>14.2</td>
<td>11.9</td>
<td>0 - 50.0</td>
<td>14.1</td>
<td>15.3</td>
<td>0 - 70.0</td>
</tr>
<tr>
<td>Prevalence of Problem Behaviors Towards Others</td>
<td>16.7</td>
<td>12.1</td>
<td>0 - 53.3</td>
<td>16.8</td>
<td>15.2</td>
<td>0 - 70.9</td>
</tr>
<tr>
<td>5. Use of 9+ Scheduled Medications</td>
<td>18.2</td>
<td>9.6</td>
<td>0 - 59.1</td>
<td>15.6</td>
<td>7.6</td>
<td>0 - 34.5</td>
</tr>
<tr>
<td>6. Prevalence of cognitive Impairment</td>
<td>51.4</td>
<td>13.5</td>
<td>16.4 -100.0</td>
<td>53.8</td>
<td>10.1</td>
<td>25.0-76.7</td>
</tr>
<tr>
<td>7. Incidence of Decline in cognitive Status</td>
<td>8.4</td>
<td>8.0</td>
<td>0 - 50.0</td>
<td>8.1</td>
<td>7.5</td>
<td>0 - 30.0</td>
</tr>
<tr>
<td>Incidence of Bladder/Bowel Incontinence</td>
<td>10.5</td>
<td>7.8</td>
<td>0 - 40.0</td>
<td>11.3</td>
<td>7.9</td>
<td>0 - 40.0</td>
</tr>
<tr>
<td>8. High Risk</td>
<td>15.6</td>
<td>12.7</td>
<td>0 - 50.0</td>
<td>15.7</td>
<td>11.0</td>
<td>0 - 45.7</td>
</tr>
<tr>
<td>Low Risk</td>
<td>5.2</td>
<td>7.9</td>
<td>0 - 50.0</td>
<td>5.8</td>
<td>8.8</td>
<td>0 - 44.4</td>
</tr>
<tr>
<td>Prevalence of Bladder/Bowel Incontinence without a Toileting Plan</td>
<td>46.0</td>
<td>31.5</td>
<td>0 - 100.0</td>
<td>39.0</td>
<td>30.7</td>
<td>0 - 100.0</td>
</tr>
<tr>
<td>9. Incidence of Indwelling catheter</td>
<td>0.7</td>
<td>1.5</td>
<td>0 - 7.7</td>
<td>1.2</td>
<td>2.1</td>
<td>0- 10.0</td>
</tr>
<tr>
<td>10 Incidence of Fecal Impaction</td>
<td>0.9</td>
<td>1.8</td>
<td>0 - 9.7</td>
<td>0.6</td>
<td>1.1</td>
<td>0 - 5.3</td>
</tr>
<tr>
<td>11 Prevalence of Urinary Tract Infection</td>
<td>5.5</td>
<td>4.1</td>
<td>0 - 18.3</td>
<td>5.9</td>
<td>6.1</td>
<td>0 - 28.8</td>
</tr>
<tr>
<td>12 Prevalence of Antibiotic/Anti-infective Use</td>
<td>9.9</td>
<td>6.9</td>
<td>0 - 33.3</td>
<td>7.9</td>
<td>5.6</td>
<td>0 - 19.6</td>
</tr>
<tr>
<td>13 Prevalence of Weight Loss</td>
<td>10.7</td>
<td>8.8</td>
<td>0 - 48.0</td>
<td>9.8</td>
<td>8.1</td>
<td>0 - 35.0</td>
</tr>
<tr>
<td>14 Prevalence of Tube Feeding</td>
<td>3.5</td>
<td>13.4</td>
<td>0 - 100.0</td>
<td>2.4</td>
<td>5.4</td>
<td>0 - 28.6</td>
</tr>
<tr>
<td>High Risk</td>
<td>4.2</td>
<td>15.2</td>
<td>0 - 100.0</td>
<td>3.2</td>
<td>7.5</td>
<td>0 - 40.0</td>
</tr>
<tr>
<td>Low Risk</td>
<td>0.2</td>
<td>1.4</td>
<td>0 - 12.5</td>
<td>0.1</td>
<td>0.7</td>
<td>0 - 4.3</td>
</tr>
<tr>
<td>Prevalence of Bedfast Residents</td>
<td>8.2</td>
<td>7.9</td>
<td>0 - 50.0</td>
<td>8.1</td>
<td>7.8</td>
<td>0 - 42.9</td>
</tr>
<tr>
<td>High Risk</td>
<td>11.0</td>
<td>9.5</td>
<td>0 - 35.1</td>
<td>12.1</td>
<td>10.6</td>
<td>0 - 40.0</td>
</tr>
<tr>
<td>Low Risk</td>
<td>3.1</td>
<td>10.9</td>
<td>0 - 100.0</td>
<td>3.7</td>
<td>8.0</td>
<td>0 - 50.0</td>
</tr>
<tr>
<td>Prevalence of Bedfast Residents</td>
<td>17.4</td>
<td>12.1</td>
<td>0 - 55.6</td>
<td>16.1</td>
<td>9.7</td>
<td>0 - 39.3</td>
</tr>
<tr>
<td>16 Incidence of Decline in late loss ADLs</td>
<td>19.4</td>
<td>16.8</td>
<td>0 - 100.0</td>
<td>16.6</td>
<td>11.2</td>
<td>0 - 50.0</td>
</tr>
<tr>
<td>High Risk</td>
<td>16.1</td>
<td>16.3</td>
<td>0 - 100.0</td>
<td>14.3</td>
<td>12.8</td>
<td>0 - 55.6</td>
</tr>
</tbody>
</table>
Appendix Table 1
Quality Indicators in Urban/Rural Nursing Facilities in Maine

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Rural (N= 100)</th>
<th>Urban (N =45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Incidence of Improvement in Late Loss ADLs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>11.0</td>
<td>11.9</td>
</tr>
<tr>
<td>Low Risk</td>
<td>8.6</td>
<td>7.4</td>
</tr>
<tr>
<td>19. Incidence of Contractures</td>
<td>12.2</td>
<td>12.7</td>
</tr>
<tr>
<td>High Risk</td>
<td>13.5</td>
<td>13.5</td>
</tr>
<tr>
<td>Low Risk</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>20. Decline in Late Loss AOL Function Among Unimpaired/Moderately Impaired Residents</td>
<td>19.0</td>
<td>18.5</td>
</tr>
<tr>
<td>Low Risk</td>
<td>12.7</td>
<td>12.6</td>
</tr>
<tr>
<td>21. Antipsychotic Use in the Absence of a Psychiatric Diagnosis</td>
<td>14.3</td>
<td>14.9</td>
</tr>
<tr>
<td>High Risk</td>
<td>19.9</td>
<td>19.8</td>
</tr>
<tr>
<td>Low Risk</td>
<td>10.3</td>
<td>10.5</td>
</tr>
<tr>
<td>22. No Antipsychotic Use on Admission/Readmission, but Used on Subsequent Assessment</td>
<td>3.9</td>
<td>3.3</td>
</tr>
<tr>
<td>High Risk</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Low Risk</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>23. Anti-psychotic Daily Dose in Excess of Surveyor Guidelines Among Residents w/Organic Mental Syndromes</td>
<td>21.6</td>
<td>27.2</td>
</tr>
<tr>
<td>24. Prevalence of Antianxiety/Hypnotic Use</td>
<td>5.3</td>
<td>4.8</td>
</tr>
<tr>
<td>25. Hypnotic Use on a Scheduled Basis or PRN More Than 2 Times inLastWeek</td>
<td>2.2</td>
<td>2.4</td>
</tr>
<tr>
<td>26. Prevalence of Use of Long-Acting Benzodiazepine</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>27. Prevalence of Daily Physical Restraints*</td>
<td>15.4</td>
<td>11.9</td>
</tr>
<tr>
<td>28. Prevalence of Little or No Activity</td>
<td>34.0</td>
<td>36.8</td>
</tr>
<tr>
<td>29. Prevalence of Stage 1-4 Pressure Ulcers</td>
<td>9.1</td>
<td>9.7</td>
</tr>
<tr>
<td>High Risk</td>
<td>10.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Low Risk</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>30. Incidence of Pressure Ulcer Development*</td>
<td>3.8</td>
<td>5.5</td>
</tr>
<tr>
<td>High Risk*</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Low Risk*</td>
<td>1.1</td>
<td>2.8</td>
</tr>
<tr>
<td>31. Insulin Dependent Diabetes With No Footcare</td>
<td>15.2</td>
<td>18.8</td>
</tr>
</tbody>
</table>

* p ≤ 0.05
Appendix Table 2

Results of Ordinary Least squares Regression

Estimates of Difference in Observed and Expected Outcomes

<table>
<thead>
<tr>
<th>Domain/Quality Indicator (Dependent Variable)</th>
<th>Intercept</th>
<th>R Square</th>
<th>F Value</th>
<th>Probability of F</th>
<th>Case Mix Index</th>
<th>Nursing Hrs/Day</th>
<th>Chain Non-Chan = 0</th>
<th>Chain = 1</th>
<th>Hospital Non-Hospital = 0</th>
<th>Hospital = 1</th>
<th>Profit Status Not for Profit = 0</th>
<th>Profit = 1</th>
<th>NF Beds</th>
<th>MSA Non-MSA = O</th>
<th>MSA = I</th>
<th>Bed Supply NF Beds/100 pop 65+</th>
<th>Occupancy Rate</th>
<th>Medicaid Share (% of Actual days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 1: Accidents</td>
<td>-22.27</td>
<td>0.19</td>
<td>2.23</td>
<td>0.02</td>
<td>35.72**</td>
<td>1.46</td>
<td>-2.93</td>
<td>-10.57</td>
<td>-0.03</td>
<td>0.02</td>
<td>-4.11</td>
<td>-0.00</td>
<td>11.64</td>
<td>10.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q11 - Prevalence of Injuries</td>
<td>6.66</td>
<td>0.25</td>
<td>3.08</td>
<td>0.00</td>
<td>26.14**</td>
<td>-0.65</td>
<td>-2.66</td>
<td>-2.00</td>
<td>2.66</td>
<td>0.00</td>
<td>-1.64</td>
<td>0.05</td>
<td>-11.29</td>
<td>-13.29*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12 - Prevalence of Falls</td>
<td>42.66</td>
<td>0.13</td>
<td>1.36</td>
<td>0.21</td>
<td>2.45</td>
<td>-0.77</td>
<td>-2.08</td>
<td>-2.84</td>
<td>1.96</td>
<td>0.00</td>
<td>-1.78</td>
<td>0.06</td>
<td>-18.89</td>
<td>-16.80*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk Low Risk</td>
<td>-43.88</td>
<td>0.30</td>
<td>3.92</td>
<td>0.00</td>
<td>54.41**</td>
<td>0.10</td>
<td>-2.98</td>
<td>-1.21</td>
<td>6.37</td>
<td>0.02</td>
<td>-2.01</td>
<td>0.03</td>
<td>-3.11</td>
<td>-2.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 2: Behavioral/Emotional</td>
<td>-47.70</td>
<td>0.19</td>
<td>2.25</td>
<td>0.02</td>
<td>44.05**</td>
<td>0.79</td>
<td>3.39</td>
<td>-25.67</td>
<td>-9.11</td>
<td>-0.02</td>
<td>1.86</td>
<td>0.13</td>
<td>9.81</td>
<td>23.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13 - Prevalence of Problem Behavior Towards Others</td>
<td>-45.23</td>
<td>0.10</td>
<td>2.02</td>
<td>0.04</td>
<td>43.68**</td>
<td>1.14</td>
<td>2.11</td>
<td>-30.44</td>
<td>-11.46</td>
<td>-0.02</td>
<td>0.68</td>
<td>0.17</td>
<td>14.83</td>
<td>22.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk Low Risk</td>
<td>-63.97</td>
<td>0.19</td>
<td>2.19</td>
<td>0.02</td>
<td>39.63**</td>
<td>0.38</td>
<td>2.53</td>
<td>-13.13</td>
<td>-3.34</td>
<td>0.00</td>
<td>188</td>
<td>0.14</td>
<td>-0.97</td>
<td>23.44*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 3: Clinical Management</td>
<td>-13.19</td>
<td>0.13</td>
<td>1.40</td>
<td>0.19</td>
<td>31.99**</td>
<td>0.41</td>
<td>3.47</td>
<td>-19.09</td>
<td>-7.33</td>
<td>-0.02</td>
<td>-0.93</td>
<td>-0.04</td>
<td>5.21</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q14 - Symptoms of Depression</td>
<td>-48.91</td>
<td>0.21</td>
<td>2.47</td>
<td>0.01</td>
<td>61.35**</td>
<td>-0.01</td>
<td>3.79</td>
<td>-14.40</td>
<td>-6.20</td>
<td>-0.03</td>
<td>0.96</td>
<td>0.00</td>
<td>13.07</td>
<td>-2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk Low Risk</td>
<td>26.32</td>
<td>0.12</td>
<td>1.28</td>
<td>0.26</td>
<td>7.56</td>
<td>0.60</td>
<td>0.98</td>
<td>-17.41</td>
<td>-9.63</td>
<td>-0.02</td>
<td>0.258</td>
<td>-0.07</td>
<td>-7.14</td>
<td>-0.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 4: Cognitive Patterns</td>
<td>19.17</td>
<td>0.18</td>
<td>2.03</td>
<td>0.04</td>
<td>-7.31</td>
<td>1.26</td>
<td>0.65</td>
<td>-7.27</td>
<td>-6.78</td>
<td>-0.01</td>
<td>-2.63</td>
<td>0.11</td>
<td>-0.93</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q16 - Prevalence of Cognitive Impairment</td>
<td>9.63</td>
<td>0.26</td>
<td>3.28</td>
<td>0.00</td>
<td>26.45</td>
<td>-0.24</td>
<td>3.35</td>
<td>-31.47</td>
<td>0.20</td>
<td>-0.02</td>
<td>1.29</td>
<td>-0.13</td>
<td>9.33</td>
<td>18.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q17 - Incidence of Decline Cognitive Status</td>
<td>8.12</td>
<td>0.04</td>
<td>0.42</td>
<td>0.93</td>
<td>1.27</td>
<td>0.50</td>
<td>-0.62</td>
<td>-5.16</td>
<td>1.55</td>
<td>0.00</td>
<td>1.42</td>
<td>0.02</td>
<td>2.14</td>
<td>3.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 5: Elimination/Confinement</td>
<td>0.37</td>
<td>0.07</td>
<td>0.65</td>
<td>0.76</td>
<td>13.93</td>
<td>-0.20</td>
<td>0.43</td>
<td>-8.83</td>
<td>1.85</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.01</td>
<td>-4.07</td>
<td>-0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q18 - Incidence of Bladder/Bowel Incontinence</td>
<td>-14.97</td>
<td>0.08</td>
<td>0.78</td>
<td>0.64</td>
<td>27.44</td>
<td>0.23</td>
<td>-0.06</td>
<td>-20.79</td>
<td>-1.29</td>
<td>0.01</td>
<td>0.88</td>
<td>-0.00</td>
<td>6.33</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk Low Risk</td>
<td>2.77</td>
<td>0.03</td>
<td>0.30</td>
<td>0.98</td>
<td>8.07</td>
<td>-0.76</td>
<td>1.18</td>
<td>-0.17</td>
<td>0.85</td>
<td>0.01</td>
<td>-0.16</td>
<td>0.01</td>
<td>-8.03</td>
<td>3.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q19 - Bladder/Bowel Incontinence without Toilet Plan</td>
<td>177.46</td>
<td>0.12</td>
<td>1.25</td>
<td>0.27</td>
<td>-113.44**</td>
<td>-1.03</td>
<td>-1.96</td>
<td>0.43</td>
<td>-11.82</td>
<td>-0.04</td>
<td>-2.10</td>
<td>-0.19</td>
<td>7.89</td>
<td>4.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10 - Incidence of Indwelling Catheter</td>
<td>5.35</td>
<td>0.08</td>
<td>0.86</td>
<td>0.57</td>
<td>-0.26</td>
<td>0.69</td>
<td>-0.45</td>
<td>-1.63</td>
<td>0.10</td>
<td>0.01</td>
<td>0.23</td>
<td>0.06</td>
<td>2.86</td>
<td>1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q11 - Incidence of Fecal Impaction</td>
<td>-0.47</td>
<td>0.03</td>
<td>0.26</td>
<td>0.99</td>
<td>-0.42</td>
<td>0.00</td>
<td>-0.13</td>
<td>-0.70</td>
<td>-0.10</td>
<td>-0.00</td>
<td>-0.04</td>
<td>0.00</td>
<td>1.33</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 6: Infection Control</td>
<td>6.68</td>
<td>0.16</td>
<td>1.76</td>
<td>0.08</td>
<td>11.59</td>
<td>0.58</td>
<td>-1.11</td>
<td>-3.99</td>
<td>-1.04</td>
<td>-0.00</td>
<td>-0.69</td>
<td>-0.03</td>
<td>-3.26</td>
<td>-7.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q12 - Incidence of UTI</td>
<td>-16.67</td>
<td>0.33</td>
<td>4.51</td>
<td>0.00</td>
<td>32.89**</td>
<td>0.37</td>
<td>-3.27**</td>
<td>-0.92</td>
<td>-1.71</td>
<td>-0.00</td>
<td>-2.51</td>
<td>0.02</td>
<td>-5.41</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13 - Incidence of Antibiotic/Anti-Infective Use</td>
<td>-16.67</td>
<td>0.33</td>
<td>4.51</td>
<td>0.00</td>
<td>32.89**</td>
<td>0.37</td>
<td>-3.27**</td>
<td>-0.92</td>
<td>-1.71</td>
<td>-0.00</td>
<td>-2.51</td>
<td>0.02</td>
<td>-5.41</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix Table 2

Results of Ordinary Least Squares Regression

Estimates of Difference in Observed and Expected Outcomes

<table>
<thead>
<tr>
<th>Domain/Quality Indicator (Dependent Variable)</th>
<th>Intercepts</th>
<th>R Square</th>
<th>F Value</th>
<th>Probability of F</th>
<th>Case Mix Index</th>
<th>Nursing Hrs/Day Chain Non Chain = 0</th>
<th>Chain Hospital = 0</th>
<th>Non-Hospital = 0</th>
<th>F Value</th>
<th>Probability of F</th>
<th>Case Mix Index</th>
<th>Hospital</th>
<th>Non-Hospital</th>
<th>Profit Status Not for Profit = 0</th>
<th>Profit = 1</th>
<th>NF Beds</th>
<th>MSA Non-NFBeds /1000 pop 65+</th>
<th>Occupancy Rate %</th>
<th>Medicaid Share (% of Actual Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain 7: Nutrition /Eating QI 14 - Prevalence of Weight Loss</td>
<td>-7.46</td>
<td>0.13</td>
<td>1.34</td>
<td>0.22</td>
<td>21.42*</td>
<td>-0.66</td>
<td>-2.03</td>
<td>-1.77</td>
<td>2.28</td>
<td>0.04</td>
<td>-3.68*</td>
<td>-0.06</td>
<td>-1.35</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 15 – Prevalence of Feeding Tube High Risk</td>
<td>-9.22</td>
<td>0.22</td>
<td>2.6</td>
<td>0.01</td>
<td>4.22</td>
<td>1.04**</td>
<td>-0.28</td>
<td>2.22</td>
<td>0.00</td>
<td>0.01</td>
<td>0.36</td>
<td>-0.01</td>
<td>-1.82</td>
<td>4.89*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>-10.67</td>
<td>0.22</td>
<td>2.6</td>
<td>0.01</td>
<td>6.05</td>
<td>1.47**</td>
<td>-0.69</td>
<td>7.72**</td>
<td>0.10</td>
<td>0.02</td>
<td>0.20</td>
<td>-0.01</td>
<td>-2.97</td>
<td>5.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 8: Physical Functioning QI 16 - Prevalence of Bedfast Residents High Risk</td>
<td>-14.17</td>
<td>0.15</td>
<td>1.65</td>
<td>0.10</td>
<td>18.62**</td>
<td>0.23</td>
<td>0.22</td>
<td>0.19</td>
<td>0.26</td>
<td>0.01</td>
<td>0.00</td>
<td>0.09</td>
<td>0.11</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>-14.17</td>
<td>0.15</td>
<td>1.65</td>
<td>0.10</td>
<td>18.62**</td>
<td>0.23</td>
<td>0.22</td>
<td>0.19</td>
<td>0.26</td>
<td>0.01</td>
<td>0.00</td>
<td>0.09</td>
<td>0.11</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 17 - Incidence of Decline In Late Loss ADLs</td>
<td>47.69</td>
<td>0.08</td>
<td>0.77</td>
<td>0.66</td>
<td>-4.00</td>
<td>0.39</td>
<td>068</td>
<td>-13.49</td>
<td>-6.94</td>
<td>-0.07</td>
<td>-2.43</td>
<td>-0.09</td>
<td>-11.11</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>76.28</td>
<td>0.07</td>
<td>0.70</td>
<td>0.72</td>
<td>-29.15</td>
<td>1.82</td>
<td>1.51</td>
<td>-3.51</td>
<td>-4.97</td>
<td>-0.08</td>
<td>-3.24</td>
<td>-0.06</td>
<td>-13.38</td>
<td>-5.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>6.62</td>
<td>0.16</td>
<td>1.59</td>
<td>0.12</td>
<td>23.00</td>
<td>-2.27</td>
<td>1.30</td>
<td>-24.28*</td>
<td>-12.53*</td>
<td>-0.06</td>
<td>-1.01</td>
<td>-0.12</td>
<td>-7.19</td>
<td>20.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 18 - Incidence of Improvement In Late Loss ADLs High Risk</td>
<td>62.93</td>
<td>0.11</td>
<td>1.19</td>
<td>0.31</td>
<td>-28.55*</td>
<td>0.73</td>
<td>-0.28</td>
<td>0.09</td>
<td>-5.96</td>
<td>-0.02</td>
<td>0.40</td>
<td>0.04</td>
<td>-12.37</td>
<td>-2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>37.73</td>
<td>0.08</td>
<td>0.62</td>
<td>0.61</td>
<td>-26.98*</td>
<td>0.62</td>
<td>-0.25</td>
<td>5.04</td>
<td>-3.66</td>
<td>0.02</td>
<td>-0.62</td>
<td>-0.02</td>
<td>-1.24</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 19 - Incidence of Contractures High Risk</td>
<td>62.54</td>
<td>0.11</td>
<td>1.11</td>
<td>0.36</td>
<td>-20.74</td>
<td>0.84</td>
<td>-1.22</td>
<td>-4.82</td>
<td>-7.42</td>
<td>-0.00</td>
<td>0.66</td>
<td>0.12</td>
<td>-21.81</td>
<td>-0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>18.72</td>
<td>0.11</td>
<td>1.18</td>
<td>0.31</td>
<td>10.97</td>
<td>0.66</td>
<td>1.25</td>
<td>-17.25*</td>
<td>-6.67</td>
<td>-0.00</td>
<td>-6.90*</td>
<td>0.04</td>
<td>-2.69</td>
<td>18.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 20 - Decline In Late Loss ADL Function Among Unimpaired or Moderately Impaired</td>
<td>37.02</td>
<td>0.06</td>
<td>0.79</td>
<td>0.64</td>
<td>4.32</td>
<td>0.78</td>
<td>2.44</td>
<td>-18.35</td>
<td>-8.69</td>
<td>-0.00</td>
<td>-3.67</td>
<td>0.04</td>
<td>-11.01</td>
<td>-19.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>16.02</td>
<td>0.08</td>
<td>0.76</td>
<td>0.86</td>
<td>5.90</td>
<td>0.91</td>
<td>1.12</td>
<td>-11.75</td>
<td>-3.07</td>
<td>-0.00</td>
<td>-5.92</td>
<td>0.03</td>
<td>3.10</td>
<td>-20.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>19.46</td>
<td>0.07</td>
<td>0.65</td>
<td>0.77</td>
<td>19.16</td>
<td>-0.01</td>
<td>0.60</td>
<td>-19.60</td>
<td>-2.37</td>
<td>-0.04</td>
<td>-3.93</td>
<td>-0.06</td>
<td>-11.26</td>
<td>4.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain/Quality Indicator (Dependent Variable)</td>
<td>Intercept</td>
<td>R Square</td>
<td>F Value</td>
<td>Probability of F</td>
<td>Case Mix Index</td>
<td>Nursing Hrs/Day</td>
<td>Chain Non-MSA = 0</td>
<td>Chain = 1</td>
<td>Hospital Non-MSA = 0</td>
<td>Hospital = 1</td>
<td>Profit Status Not for profit = 0</td>
<td>Profit = 1</td>
<td>NF Beds</td>
<td>MSA Non-MSA = 0</td>
<td>MSA = 1</td>
<td>Bed Supply NFBeds/1000 pop 65+</td>
<td>Occupancy Rate (% of Actual Days)</td>
<td>Medicaid Share (% of Actual Days)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Domain 9: Psychotropic Drug use</td>
<td></td>
</tr>
<tr>
<td>QI 21 - Psychotropic Drug Use</td>
<td></td>
</tr>
<tr>
<td>No Diagnosis</td>
<td>-4.54</td>
<td>0.07</td>
<td>0.75</td>
<td>0.67</td>
<td>-2.35</td>
<td>0.35</td>
<td>2.50</td>
<td>-0.23</td>
<td>-3.34</td>
<td>-0.02</td>
<td>1.79</td>
<td>0.08</td>
<td>16.35</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>9.43</td>
<td>0.18</td>
<td>1.99</td>
<td>0.04</td>
<td>-25.55</td>
<td>1.68</td>
<td>4.94*</td>
<td>14.79</td>
<td>-2.97</td>
<td>-0.01</td>
<td>0.41</td>
<td>0.17*</td>
<td>20.85</td>
<td>-6.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>-4.46</td>
<td>0.04</td>
<td>0.41</td>
<td>0.94</td>
<td>3.99</td>
<td>0.63</td>
<td>1.10</td>
<td>-3.35</td>
<td>-3.20</td>
<td>-0.04</td>
<td>2.20</td>
<td>0.01</td>
<td>10.49</td>
<td>7.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 22 - No Anti-psychotic Drug use on Admission</td>
<td>-2.18</td>
<td>0.08</td>
<td>0.84</td>
<td>0.59</td>
<td>0.54</td>
<td>0.78</td>
<td>2.22</td>
<td>-17.33</td>
<td>0.16*</td>
<td>-0.02</td>
<td>0.59</td>
<td>0.05</td>
<td>22.64</td>
<td>-7.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>-16.27</td>
<td>0.08</td>
<td>0.84</td>
<td>0.59</td>
<td>5.65</td>
<td>0.32</td>
<td>3.23</td>
<td>-16.21</td>
<td>-12.31*</td>
<td>-0.00</td>
<td>0.48</td>
<td>0.10</td>
<td>22.20</td>
<td>-7.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>-2.84</td>
<td>0.16</td>
<td>1.72</td>
<td>0.09</td>
<td>3.46</td>
<td>-1.81</td>
<td>3.52</td>
<td>-13.68*</td>
<td>-10.51*</td>
<td>-0.00</td>
<td>2.44</td>
<td>-0.02</td>
<td>16.19</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 23 - Anti-psychotic Drug Use in Excess of Surveyor Guidelines</td>
<td>41.22</td>
<td>0.09</td>
<td>0.95</td>
<td>0.49</td>
<td>-69.30</td>
<td>1.93</td>
<td>4.87</td>
<td>21.76</td>
<td>7.23</td>
<td>0.03</td>
<td>4.32</td>
<td>-0.03</td>
<td>29.20</td>
<td>15.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 24 - Prevalence of Antianxiety/Hypnotic Use</td>
<td>16.20</td>
<td>0.14</td>
<td>1.56</td>
<td>0.13</td>
<td>-8.71</td>
<td>0.12</td>
<td>-1.38</td>
<td>7.37*</td>
<td>0.31</td>
<td>0.01</td>
<td>1.30</td>
<td>0.05</td>
<td>0.26</td>
<td>-7.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 25 - Hypnotic Use on a Scheduled Basis more Than 2 Times per Week</td>
<td>2.26</td>
<td>0.13</td>
<td>1.41</td>
<td>0.19</td>
<td>0.07</td>
<td>0.08</td>
<td>-1.09</td>
<td>2.31</td>
<td>-0.54</td>
<td>0.01</td>
<td>0.57</td>
<td>0.02</td>
<td>0.01</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 26 - Prevalence of Long-acting Benzodiazepine</td>
<td>0.16</td>
<td>0.05</td>
<td>0.49</td>
<td>0.89</td>
<td>0.01</td>
<td>0.00</td>
<td>-0.09</td>
<td>0.05</td>
<td>0.06</td>
<td>0.00</td>
<td>0.07</td>
<td>-0.00</td>
<td>0.00</td>
<td>-0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 10: Quality of Life</td>
<td></td>
</tr>
<tr>
<td>QI 27 - Prevalence of Daily Physical restraints</td>
<td>-0.05</td>
<td>0.15</td>
<td>1.61</td>
<td>0.11</td>
<td>21.41</td>
<td>-1.04</td>
<td>1.42</td>
<td>0.29</td>
<td>2.07</td>
<td>0.05*</td>
<td>-3.92</td>
<td>-0.03</td>
<td>-17.88</td>
<td>13.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 28 - Prevalence Little/No Activity</td>
<td>64.64</td>
<td>0.11</td>
<td>1.20</td>
<td>0.30</td>
<td>-15.01</td>
<td>-2.12</td>
<td>8.06*</td>
<td>17.69</td>
<td>6.31</td>
<td>0.08</td>
<td>1.58</td>
<td>-36.82</td>
<td>12.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domain 11: Skin Care</td>
<td></td>
</tr>
<tr>
<td>QI 29 - Prevalence of Stage 1- 4</td>
<td></td>
</tr>
<tr>
<td>Pressure Ulcers</td>
<td></td>
</tr>
<tr>
<td>No Diagnosis</td>
<td>-11.38</td>
<td>0.20</td>
<td>2.27</td>
<td>0.02</td>
<td>16.83*</td>
<td>0.65</td>
<td>0.61</td>
<td>4.21</td>
<td>-0.64</td>
<td>0.04*</td>
<td>-0.57</td>
<td>0.05</td>
<td>8.23</td>
<td>3.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>10.83</td>
<td>0.22</td>
<td>2.63</td>
<td>0.01</td>
<td>14.88</td>
<td>1.03</td>
<td>0.96</td>
<td>10.13*</td>
<td>-0.41</td>
<td>0.06*</td>
<td>-0.49</td>
<td>0.07</td>
<td>8.75</td>
<td>4.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>-5.40</td>
<td>0.08</td>
<td>0.79</td>
<td>0.64</td>
<td>2.98</td>
<td>0.36</td>
<td>-1.29</td>
<td>-0.21</td>
<td>0.18</td>
<td>0.01</td>
<td>-0.61</td>
<td>0.03</td>
<td>2.55</td>
<td>3.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 30 - Incidence of Pressure Ulcer Development</td>
<td>-6.88</td>
<td>0.10</td>
<td>1.03</td>
<td>0.42</td>
<td>8.18</td>
<td>0.53</td>
<td>0.32</td>
<td>-1.75</td>
<td>-0.52</td>
<td>0.01</td>
<td>0.44</td>
<td>0.02</td>
<td>3.96</td>
<td>4.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk</td>
<td>-6.30</td>
<td>0.08</td>
<td>0.80</td>
<td>0.63</td>
<td>4.86</td>
<td>0.71</td>
<td>0.44</td>
<td>0.84</td>
<td>-0.63</td>
<td>0.02</td>
<td>0.78</td>
<td>0.01</td>
<td>1.84</td>
<td>5.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Risk</td>
<td>0.23</td>
<td>0.21</td>
<td>2.43</td>
<td>0.01</td>
<td>3.41</td>
<td>0.21</td>
<td>-0.49</td>
<td>0.04</td>
<td>0.16</td>
<td>0.02*</td>
<td>-0.59</td>
<td>0.05*</td>
<td>-8.85*</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QI 31 - Insulin Dependent Diabetes With No Foot Care</td>
<td>73.53</td>
<td>0.07</td>
<td>0.72</td>
<td>0.70</td>
<td>-62.25</td>
<td>-1.91</td>
<td>6.45</td>
<td>-7.63</td>
<td>-0.29</td>
<td>0.04</td>
<td>6.17</td>
<td>0.00</td>
<td>22.02</td>
<td>-19.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX A

MDS + RESIDENT ASSESSMENT DESCRIPTION AND FORMS
III. Purpose and Use of the minimum Data Set Plus or MDS+

The Omnibus Reconciliation Act of 1987 (OBRA’87) requires all nursing facilities in the country to conduct a comprehensive, accurate, standardized, reproducible assessment on all residents beginning October 1, 1990. This comprehensive assessment must describe a resident’s capability to perform daily life functions and significant impairments in functional capacity. It must also include at least the following information:

1. Medically defined conditions and prior medical history
2. Medical status measurement
3. Functional status
4. Sensory and physical impairments
5. Nutritional status and requirements
6. Special treatments and procedures
7. Psychosocial status
8. Discharge potential
9. Dental condition
10. Activities potential
11. Rehabilitation potential
12. Cognitive status
13. Drug therapy

The Health Care Financing Administration (HCFA) contracted in 1988 with the Research Triangle Institute to develop an instrument that would include this minimum data set and that could be used as a tool for developing a patient’s plan of care. The form that has been developed to assist facilities in conducting a comprehensive assessment is commonly referred to as the MDS or Minimum Data Set.

As a participant in the Multistate Case Mix Demonstration Project, the Maine Department of Human Services has sought approval from HCFA to use an instrument that is being referred to as the Minimum Data Set Plus, or MDS+, as an alternative instrument for conducting comprehensive resident assessments in Maine. This instrument is called the MDS+ because it includes all the information contained on the MDS plus certain additional information that meet the needs and specifications for the Case Mix Demonstration Project. An item-by-item description of the differences between the MDS and the MDS+ is attached in Appendix A.
The major difference between the MDS and the MDS+ is the inclusion of a page for medications on the MDS+. Other differences are primarily wording differences or modifications that were made to the MDS+ as a result of the collection of the sample assessment data in the demonstration states last spring.

The designation of the MDS+ as an alternative instrument in Maine will serve a number of functions. First, the use of the MDS+ will serve as a common assessment form for all nursing facilities that can then be used as a tool for patient care planning. Second, the use and completion of this form by nursing facilities in the state can be used to satisfy the OBRA’87 requirement that a comprehensive assessment be conducted on all nursing facility residents. Third, the information contained on the MDS+ will provide a data base that will be used to design and develop a case mix payment and quality assurance system in Maine. Under a case mix payment system, rates for the Medicaid and Medicare program would be established based on the amount of resources required to care for nursing facility residents. Typically, residents are classified into “groups” which reflect the staff time required to care for residents and/or their medical or psychosocial conditions. Payment rates are then developed which reflect those different groupings. The MDS+ Will be the common assessment tool to provide the data base to establish these groupings.
Background Information at Intake/Admission

<table>
<thead>
<tr>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>First:</td>
</tr>
<tr>
<td>Date of Current Admission:</td>
</tr>
<tr>
<td>Medicare No.:</td>
</tr>
<tr>
<td>Facility Provider No.:</td>
</tr>
<tr>
<td>Gender:</td>
</tr>
<tr>
<td>Birthday:</td>
</tr>
<tr>
<td>Lifetime Occupation:</td>
</tr>
<tr>
<td>Primary Language:</td>
</tr>
<tr>
<td>Residential History Past 5 Years:</td>
</tr>
<tr>
<td>Mental Health History:</td>
</tr>
<tr>
<td>Conditions Related to MR/DD Status:</td>
</tr>
<tr>
<td>Admitted From:</td>
</tr>
<tr>
<td>Lived Alone:</td>
</tr>
<tr>
<td>Admission Information Averaged:</td>
</tr>
</tbody>
</table>
Minimum Data Set Plus for Nursing Home Resident Assessment and Care Screening (MDS+)

Assessment Start Date
- Month
- Day
- Year

Original (O) or Corrections (#)

Signature of RN

Assessment Coordinator

SECTION A: IDENTIFICATION AND BACKGROUND INFORMATION

1. **RESIDENT NAME**
 - First:
 - Last:

2. **SOCIAL SECURITY NO.**

3. **MEDICAID NO.**

4. **MEDICAL RECORD NO.**

5. **REASON FOR ASSESSMENT**
 - Initial admission assessment
 - Hosp./Medicare reassess.
 - Readmission, not Medicare
 - Quarterly
 - Other (e.g., LRI)

6. **CURRENT PAYMENT SOURCE(S) FOR NL STAY**
 - 0. Not used
 - 1. Ancillary
 - 2. Per diem
 - 3. Both
 - Medicaid
 - Medicare
 - Self-pay.Private Insur.
 - CHAMPUS
 - Other

7. **RESPONSIBILITY LEGAL GUARDIAN**
 - (Check all that apply)
 - Legal guardian
 - Family member
 - Other legal oversight
 - Durable power of attorney
 - Health care proxy
 - Resident responsible
 - NONE OF ABOVE

8. **ADVANCED DIRECTIVES**
 - (For those items with supporting documentation in the medical record, check all that apply.)
 - Living will
 - Feeding restrictions
 - Do not resuscitate
 - Medication restrictions
 - Do not hospitalize
 - Other treatment restrictions
 - Organ donation
 - Autopsy request

9. **DISCHARGE PLANNED WITHIN 3 MOS.**
 - 0. No
 - 1. Yes
 - 2. Unknown/uncertain

10. **MARRITAL STATUS**
 - 1. Never married
 - 2. Married
 - 3. Widowed
 - 4. Separated

SECTION B: COGNITIVE FUNCTION

1. **COMA/TIE**
 - (Penetrate vegetative state/no discernible consciousness)
 - 0. No
 - 1. Yes (Skip to SECTION G)

2. **MEMORY**
 - (Recall of what was learned or known; code correct response)
 - Short-term memory OK — seems/appears to recall after 5 minutes
 - Memory OK
 - Memory problems
 - Long-term memory OK — seems/appears to recall
 - Memory OK
 - Memory problems

SECTION C: COMMUNICATION/Hearing PATTERNS

1. **HEARING**
 - (With hearing appliance, f used)
 - 0. Hears adequately — normal talk, TV, phone
 - 1. Minimal difficulty when in quiet setting
 - 2. Has in special situation only — speaker has to adjust tona! to speak distinctly
 - 3. Highly impaired/absence of useful hearing

2. **COMMUNICATION DEVICES TECHNIQUES**
 - (Check all that apply during last 7 days)
 - Hearing aid, present and used
 - Hearing aid, present and not used
 - Other receptive comm. technique used (e.g., lip read)

3. **MODES OF EXPRESSION**
 - (Check all used by resident to make needs known)
 - Speech
 - Writing messages to express or clarify needs
 - Signs/gestures/words
 - None

4. **MAKING SELF UNDERSTOOD**
 - (Expressing information content — however able)
 - 0. Understood
 - 1. Usually understood — difficulty finding words or organizing thoughts
 - 2. Sometimes understood — ability is limited to making concrete requests
 - 3. Rarely/never understood

5. **SPEECH CLARITY**
 - Speech unclear

6. **ABILITY TO UNDERSTAND OTHERS**
 - (Understanding verbal information content — however able)
 - 0. Understands
 - 1. Usually understands — may miss some part/intent of message
 - 2. Sometimes understands — responds adequately to simple, direct communication
 - 3. Rarely/never understands

7. **CHANGE IN COMMUNICATION/HEARING**
 - Resident's ability to express, understand or hear information has changed over last 90 days
 - 0. No change
 - 1. Improved
 - 2. Deteriorated

Code the appropriate response: Automatic Trigger Potential Trigger

Related Conditions
- 1. Delirium
- 2. Cognitive Loss/Dementia
- 3. Vision Function
- 4. Communication
- 5. ADL Functional/Rehabilitation Potential
- 6. Urinary Incontinence and Incontinence Catheter
- 7. Psychosocial Well-Being
- 8. Mood State
- 9. Behavioral Problems
- 10. Activities
- 11. Falls
- 12. Nutritional Status
- 13. Feeding Tubes
- 14. Dehydration/Fluid Maintenance
- 15. Dental Care
- 16. Pressure Ulcers
- 17. Physical Restraints
- 18. Drug Use
- 19. Incontinence
- 20. Skin
- 21. Other

452
BEHAVIOR MANAGEMENT PROGRAM
Behavior problem has been addressed by clinically developed behavior management program. (Note: do not include programs that involve only physical restraints or psychotropic medications in this category.)

1. No behavior problem
 - Yes, addressed
 - No, not addressed

CHANGING IN MOOD
Change in mood in last 90 days

1. No change
 - Improved
 - Deteriorated

CHANGING IN PROBLEM BEHAVIOR
Change in problem behavioral signs in last 90 days

1. No change
 - Improved
 - Deteriorated

SECTION C: PSYCHOSOCIAL WELL-BEING

1. SENSE OF INITIATIVE/INVOLVEMENT
 - At ease interacting with others
 - At ease during planned or structured activities
 - At ease during self-initiated activities
 - Establishes own goals

2. UNSETTLED RELATIONSHIP
 - Conflict/open conflict with and/or repeated criticism of staff
 - Unhappy with roommate
 - Unhappy with residents other than roommate
 - Openly expresses conflict/danger with family or friends

3. PAST ROLE
 - Strong identification with past role and life status
 - Expresses sadness/anger/emptiness feeling over lost role/status

SECTION D: ACTIVITY PATTERN

1. TIME AWAKE
 - (Check appropriate time periods over last 7 days.)
 - Resident asleep most or all of the time (i.e., naps no more than one hour per time period) in the:
 - Morning
 - Afternoon
 - Evening
 - None of the above

2. AVERAGE TIME INVOLVED IN ACTIVITIES
 - Most (more than 2 hours of time)
 - Least (less than 1/2 of time)
 - None

3. PREFERRED ACTIVITY SETTINGS
 - Own room
 - Day/activities norm
 - Outside facility
 - Inside NH/Hosp unit

4. GENERAL ACTIVITY PREFERENCES
 - (Check all preferences whether or not activity is currently available to resident.)
 - Care/other games
 - Crafts/arts
 - Exercise/sports
 - Music
 - Read/write
 - Social/spiritual/religious activities

SECTION E: MOOD AND BEHAVIOR PATTERN

- SAD OR ANXIOUS MOOD
 - Verbal expressions
 - Gained (Observe) Observable Signs of Mental Distress
 - Tearfulness, emotional groaning, sighing, breathlessness
 - Motor agitation such as pacing, handwringing, or picking
 - Petulant concern with health
 - Recurrent thoughts of death that, if believed he/she would do it, have a heart attack
 - Suicidal thoughts/actions
 - Failure to eat or take medications
 - Withdrew from self-care, or self-care activities
 - Reduced communications
 - Early morning awakening with unpleasant mood

- MOOD PERSISTENCE
 - Sad or anxious mood intrudes on daily life over last 7 days
 - Many hours
 - No
 - Yes

- PROBLEM BEHAVIOR
 - (Code for behavior in last 7 days)
 - Behavior not exhibited in last 7 days

- RESIDENT RESISTS CARE
 - Refused taking medications/injection
 - Resisted ADL assistance
 - Resisted eating
 - None of the above

<table>
<thead>
<tr>
<th>Movement</th>
<th>ADL Functional/Rehabilitation Potential</th>
<th>Urinary Incontinence and Indwelling Catheter</th>
<th>Psychosocial Well-Being</th>
<th>Mood State</th>
<th>Behavior Problems</th>
<th>Activities</th>
<th>Dehydration/Pulmonary Maintenance</th>
<th>Dental Care</th>
<th>Pressure Ulcers</th>
<th>Feeding Tubes</th>
<th>Psychotropic Drug Use</th>
<th>Physical Restraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Delirium</td>
<td>Cognitive Loss/Dementia</td>
<td>Visual Function</td>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code the appropriate response.</th>
<th>Check all the responses that apply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] Automatic Trigger</td>
<td>[] Potential Trigger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th>Prov. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SECTION D. CONTINUOUS

6. **PREFERENCES OR ISOLATION ACTIVITIES**
 - Resident expresses/indicates preferences for other activities/choices.
 - Yes ☐ No ☐

6. **ISOLATION ORDERS**
 - Resident is under medical care for isolation which prohibits participation in group activities.
 - Yes ☐ No ☐

SECTION E. PHYSICAL FUNCTIONING AND STRUCTURAL PROBLEMS

1. **ADL SELF-PERFORMANCE**
 - Code for resident's performance over all shifts during last 7 days—excluding setup.
 - Independent ☐ Partial ☐ Dependent ☐
 - No help or overnight ☐ Helps overnight provided only 1 or 2 times last 7 days.
 - Supervision ☐ Physical assistance provided only 1 or 2 times last 7 days.
 - Physical assistance provided more than 2 times last 7 days.

2. **ADL SUPPORT PROVIDED**
 - Code for most support provided over all shifts during last 7 days; code resident's self-performance classification.
 - No setup or physical help from staff ☐
 - Setup help only ☐
 - One-person physical assist ☐
 - Two-person physical assist ☐

 a. **BED MOBILITY**
 - How resident moves to and from lying position, turns side to side, and positions body while in bed.
 - Standing or sitting assistance ☐
 - Partial ☐ Independent ☐

 b. **TRANSFER**
 - How resident moves between surfaces—floor-to-bed, chair, wheelchair, standing position.
 - Standing assistance ☐
 - Partial ☐ Independent ☐

 c. **LOCOMOTION**
 - How resident moves between locations in his/her room and adjacent corridor on same floor.
 - Standing assistance ☐
 - Partial ☐ Independent ☐

 d. **DRESSING**
 - How resident puts on, takes off, and folds all items of bed and clothing, including dressing/removing prosthesis.
 - Standing assistance ☐
 - Partial ☐ Independent ☐

 e. **EATING**
 - How resident eats and drinks (regardless of skill).
 - Standing assistance ☐
 - Partial ☐ Independent ☐

 f. **TOILET USE**
 - How resident uses the toilet or commode, bedpan, urinal; transfers on and off toilet, cleansing pad, managing catheter or catheter, change clothes.
 - Partial assistance ☐
 - Independent ☐

 g. **PERSONAL HYGIENE**
 - How resident maintains personal hygiene, including combing, brushing, shaving, applying makeup, washing and drying face, hands, and perineum.
 - Standing assistance ☐
 - Partial ☐ Independent ☐

SECTION F. CONTINUITY IN LAST 7 DAYS

1. **CONTINUITY SELF-CONTROL CATEGORIES**
 - Code for resident's performance over all units.
 - Usually continent ☐ Incontinent more than once a week or less ☐
 - Infrequent incontinence ☐ Daily incontinence ☐
 - Occasional incontinence ☐
 - Incontinent more than once a week or less ☐
 - Daily incontinence ☐

 a. **BOWEL CONTINENCE**
 - How resident holds bowel movements with appliance or bowel continence programs, if employed.
 - Automatic trigger ☐
 - Potential trigger ☐

 b. **BLADDER CONTINENCE**
 - How resident holds bladder (if treated with a catheter, if trained to use the toilet), if employed.
 - Automatic trigger ☐
 - Potential trigger ☐

SECTION G. CONTINUOUS

4. **BODY CONTROL PROBLEMS**
 - Balance ☐ Partial ☐ Total loss of ability to balance on one leg standing (e.g., problem using toothbrush or adjusting hearing aid).
 - Bedfall all or most of the time ☐
 - Hemiplegia/paraplegia (111)
 - Quadriplegia (111)
 - Arm partial or total loss of voluntary movement (111)
 - Hand—lack of dexterity (e.g., problem using toothbrush or adjusting hearing aid).
 - Leg—partial or total loss of voluntary movement (111)
 - Leg—unsteady gait (111)
 - Tongue—partially or totally loss of ability to position, balance, or turn body (111)
 - Amputation (111)
 - NONE OF ABOVE

5. **CONTRACTURE**
 - Contracture—None ☐
 - Contracture—Hands/wrists ☐
 - Contracture—Elbows/shoulders/hips/knees/feet/toes ☐
 - Tilted (manually/mechanically) ☐

6. **MOBILITY APPARATUS/DEVICES**
 - Cane/walker ☐
 - Tracer ☐
 - Wheeled self ☐
 - Other person wheeled ☐

7. **TASK SEGMENTATION**
 - Resident requires that some or all of ADL activities be broken into a series of tasks so that resident can perform them.
 - No ☐ Yes ☐

8. **CHANGE IN ADL SELF-PERFORMANCE**
 - Change in ADL Self-Performance in last 90 days.
 - No change ☐ Improved ☐ Deteriorated ☐

9. **ADL FUNCTIONAL REHABILITATION POTENTIAL**
 - Resident believes he/she is capable of increased independence in at least one ADL.
 - Direct care staff believes resident capable of increased independence in at least one ADL.
 - Resident able to perform tasks/activity but is very slow.
 - Major difference in ADL self-performance or ADL support in mornings and evenings (at least one category change in self-performance or support in any ADL).
 - Self-performance restricted due to absence of assistive devices (e.g., cane or walker).}

SECTION H. CONTINUITY IN LAST 7 DAYS

1. **INCONTINENCE SELF-CONTROL CATEGORIES**
 - Code for resident's performance over all units.
 - Usually continent ☐ Incontinent more than once a week or less ☐
 - Infrequent incontinence ☐ Daily incontinence ☐
 - Occasional incontinence ☐
 - Incontinent more than once a week or less ☐
 - Daily incontinence ☐

 a. **BOWEL CONTINENCE**
 - How resident holds bowel movements with appliance or bowel continence programs, if employed.
 - Automatic trigger ☐
 - Potential trigger ☐

 b. **BLADDER CONTINENCE**
 - How resident holds bladder (if treated with a catheter, if trained to use the toilet), if employed.
 - Automatic trigger ☐
 - Potential trigger ☐

SECTION I. CONTINUITY IN LAST 7 DAYS

2. **INCONTINENCE RELATED TESTING**
 - Sign if resident bladder and bowel continence codes equal 0 or 1 and no catheter is used.
 - Resident has been tested for urinary tract infection.
 - Resident has been checked for presence of focal infection.
 - Toned bowel elimination.
 - NONE OF ABOVE
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. APPLIANCES AND PROGRAMS</td>
<td>Any scheduled toileting plan? (Yes/No)</td>
</tr>
<tr>
<td>IV. CHANGE IN URINARY CONTINENCE</td>
<td>Change in urinary continence/appliances or programs in last 90 days</td>
</tr>
<tr>
<td>V. SKIN CARE AND FOOT CARE</td>
<td>Open lesion caused by poor venous circulation to lower extremities</td>
</tr>
<tr>
<td>VI. OTHER SKIN PROBLEMS</td>
<td>Skin desensitized to pain, pressure, discomfort</td>
</tr>
<tr>
<td>VII. ACTIVE SKIN CARE PROGRAM, SPECIAL STOCKINGS, FOOT CARE</td>
<td>Preventative/Protective Skin Care, Special Stockings, Active Foot Care Treatments</td>
</tr>
<tr>
<td>VIII. DISEASES</td>
<td>Check only those diseases present that have a relationship to current ADL status, cognitive status, behavior status, medical treatments, or risk of death</td>
</tr>
<tr>
<td>IX. OTHER CURRENT DIAGNOSES AND ICD-9 CODES</td>
<td>360-362.9 276.5 276.3 281.0 281.1 281.3 281.5 281.7</td>
</tr>
<tr>
<td>X. PROBLEMS/CONDITIONS AND SYMPTOMS</td>
<td>(Check all that are present in last 7 days, unless otherwise noted)</td>
</tr>
<tr>
<td>XI. ACCIDENTS</td>
<td>Fall — past 30 days</td>
</tr>
<tr>
<td>XII. STABILITY OF CONDITIONS</td>
<td>Conditions/diseases make resident's cognitive, ADL, or behavior status unstable/variable, precarious, or deteriorating</td>
</tr>
</tbody>
</table>

Definitions:
- **Automatic Trigger:** (1) = Check all that apply
- **Potential Trigger:** (2) = Check all that apply
- **Provisional Trigger:** (3) = Check all that apply
- **Code:** = Check all that apply
- **Date:** = Date
- **Facility:** = Facility
- **Prov. No.:** = Provisional Number

Sections:
- A. ADL, Functional/Rehabilitation Potential
- B. Cognitive Loss/Cognition
- C. Vital Functions
- D. Communication
- E. ADL, Functional/Rehabilitation Potential
- F. Potential Trigger
- G. Provisional Trigger
- H. Behavior Problems
- I. Activities
- J. Edema
- K. Accidents
- L. Stability of Conditions
SECTION I: ORAL-NUTRITIONAL STATUS

1. **ORAL PROBLEMS**
 - Chewing problem
 - Swallowing problem
 - Mouth pain []
 - None of above

2. **HEIGHT AND WEIGHT**
 - a. Record height in inches []
 - b. Record weight in pounds []
 - Weight based on most recent status in last 30 days; measure weight consistently in accordance with standard facility practices; e.g., in am, after voiding before meal, with shoes off, and in nightclothes.
 - c. Weight loss (i.e., 5% plus in the past 30 days or 10% in the past 180 days): []
 - d. No: []
 - e. Yes: []

3. **NUTRITIONAL PROBLEMS**
 - a. Regular complaint of hunger []
 - b. Insufficient fluid or dehydration []
 - c. Did not consume all liquids provided during last 3 days []
 - d. None of above

4. **NUTRITIONAL APPROACHES**
 - a. Parenteral/nasal []
 - b. Feeding tube []
 - c. Therapeutic diet []
 - d. Dietary supplement between meals []
 - e. Mechanically altered diet []
 - f. Syringes (oral feeding) []
 - g. None of above

SECTION II: ORAL/DENTAL STATUS

- Dental status: []
- Has dentures or removable bridge []
- Some/all natural teeth lost — does not have or does not use dentures (or partial plates) []
- Broken, loose, or carious teeth []
- Inflamed gums (gingivitis); swollen or bleeding gums; oral abscesses, ulcers, or rash []
- Daily cleaning of teeth/dentures []
- None of above

SECTION III: SPECIAL TREATMENTS, DEVICES, PROCEDURES & SUPPLIES

1. **SPECIAL CARE** — (Check treatments received during the last 14 days):
 - a. Chemotherapy []
 - b. Radiation []
 - c. Dialysis []
 - d. IV meds []
 - e. Suctioning []
 - f. Other []
 - g. None of above

2. **THERAPIES** — Enter the number of days and total minutes of each of these therapies was administered for at least 10 minutes in the last 7 days: (Enter 0 if none)
 - a. Speech — language pathology, audiology services []
 - b. Occupational therapy []
 - c. Physical therapy []
 - d. Psychological therapy (any licensed prof.) []
 - e. Respiratory therapy []
 - f. Recreational therapy []

3. **DEVICE AND RESTRAINTS**
 - a. Bed rails []
 - b. Trunk restraint []
 - c. Limb restraint []
 - d. Chair prevents rising []

4. **SUPPLIES**
 - a. Sterile dressings []
 - b. Unique/Special care/grooming supplies []
 - c. Percutaneous dialysis supplies []

SECTION IV: MEDICATION USE

1. **NUMBER OF MEDICATIONS**
 - Record the number of prescribed medications used in the last 7 days; enter "0" if none. Skip to item 5.

2. **NEW MEDICATIONS**
 - b. Resident has received new medication during the last 7 days: []
 - a. No: []
 - b. Yes: []

3. **INJECTIONS**
 - Record the number of injections given during the last 7 days.

4. **DAYS RECEIVED THE FOLLOWING MEDICATION**
 - a. Antipsychotics: []
 - b. Antianxiety/antidepressants: []
 - c. Antidepressants: []

- Code the appropriate response. = Check all the responses that apply.
SECTION 0. CONTINUED

6. PREVIOUS MEDICATION RESULTS

Skip this question if resident currently receiving antipsychotics, antidepressants, or antianxiety/hypnotics — otherwise code correct response for last 90 days.

Resident has previously received psychotropic medications for a mood or behavior problem, and these medications were effective (without undue adverse consequences).

0. No, drugs not used
1. Drugs were effective
2. Drugs were not effective
3. Drug effectiveness unknown

SECTION 1. PARTICIPATION IN ASSESSMENT

1. PARTICIPATION IN ASSESSMENT

<table>
<thead>
<tr>
<th>Resident</th>
<th>0. No</th>
<th>1. Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>0. No</td>
<td>1. Yes</td>
</tr>
<tr>
<td>Significant Other</td>
<td>0. No</td>
<td>1. Yes</td>
</tr>
</tbody>
</table>

P.2. SIGNATURES OF THOSE COMPLETING THE ASSESSMENT:

a. Signature of RII Assessment Coordinator

b. End Date

c. Signature

title
sections
Date

d.
ea.
f.
p.
h.

P.3. CASE MIX GROUP

Medicare
State

☐ = Code the appropriate response. ☐ = Check all the responses that apply.
SECTION Q. MEDICATIONS LIST

1. List all medications given during the last 7 days. Include medications used regularly less than weekly as part of the resident’s treatment regimen.

2. RA (Route of Administration). Use the appropriate code from the following list:
 1 = by mouth (PO)
 2 = sublingual (SL)
 3 = intramuscular (IM)
 4 = intravenous (IV)
 5 = subcutaneous (SubQ)
 6 = rectally
 7 = topical
 8 = inhalation
 9 = enteral tube
 10 = other

3. FREQ (Frequency): Use the appropriate frequency code to show the number of times per day that the medication was given.
 - PR = (PRN) as necessary
 - 1H = (qH) every hour
 - 2H = (q2H) every two hours
 - 3H = (q3H) every three hours
 - 4H = (q4H) every four hours
 - 8H = (q8H) every eight hours
 - 12H = (q12H) every 12 hours
 - 24H = once daily
 - 1D = once daily
 - 2D = twice daily
 - 3D = three times daily
 - 4D = four times daily
 - 5D = five times daily
 - 1W = once weekly
 - 2W = twice weekly
 - 3W = three times weekly
 - 4W = four times weekly
 - 5W = five times weekly
 - 1M = once monthly
 - 2M = twice monthly
 - 3M = three times monthly
 - 4M = four times monthly
 - C = continuous

4. PRN-n (pam — number of doses): If the frequency code is "PRN", record the number of times during the past 7 days that each PRN medication was given.
 Do not use this column for scheduled medications.

5. DRUG CODE: Enter the National Drug Code (NDC). The last two digits of the 11-digit NDC define package size and have been omitted from the codes listed in the manual Appendix E. If using this Appendix, the NDC should be entered left-justified (the first digit of the code should be entered in the space farthest to the left of the NDC code column). This should result in the last two spaces being left blank.

<table>
<thead>
<tr>
<th>Medication Name and Dosage</th>
<th>2. RA</th>
<th>3. Freq</th>
<th>4. PRN-n</th>
<th>5. NDC Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXAMPLE: Coumadin 2.5 mg</td>
<td>1</td>
<td>1W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digoxin 0.125 mg</td>
<td>1</td>
<td>1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humulin R 25 Units</td>
<td>5</td>
<td>1D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robitussin 15cc</td>
<td>1</td>
<td>PR</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B
DESCRIPTION OF QUALITY INDICATORS

<table>
<thead>
<tr>
<th>Domain 1: Accidents</th>
<th>Description</th>
<th>Numerator</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prevalence of Any Injury</td>
<td>Residents with any injury (fracture or abrasions/bruises or burns) on most recent assessment</td>
<td>All residents on most recent assessment</td>
<td></td>
</tr>
<tr>
<td>2. Prevalence of Falls</td>
<td>Residents who had falls on most recent assessment</td>
<td>All residents on most recent assessment</td>
<td></td>
</tr>
</tbody>
</table>

Domain 2: Behavioral/Emotional Patterns

| 3. Prevalence of Problem Behavior Toward Others | Residents with problem behavior toward others on most recent assessment | All residents on most recent assessment |
| 4. Prevalence of Symptoms of Depression | Residents with diagnosis or symptoms of depression on most recent assessment | All residents on most recent assessment |

Domain 3: Clinical Management

| 5. Use of 9 or More Scheduled Medications | Residents who received 9 or more scheduled medications on most recent assessment | All residents on most recent assessment except those whose most recent assessment is an initial admission or re-admission |

Domain 4: Cognitive Patterns

| 6. Prevalence of Cognitive Impairment | Residents with cognitive impairment on most recent assessment | All residents on most recent assessment |
| 7. Incidence of Decline in Cognitive Status | Residents who were cognitively impaired on most recent assessment | Residents who were not cognitively impaired on previous assessment |
APPENDIX B
DESCRIPTION OF QUALITY INDICATORS

<table>
<thead>
<tr>
<th>Domain 5: Elimination/Continence</th>
<th>Numerator</th>
<th>Description</th>
<th>Denominator</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Incidence of Bladder or Bowel Incontinence</td>
<td>Residents who were frequently incontinent or incontinent on most recent assessment</td>
<td>Residents who are continent or only occasionally incontinent on previous assessment</td>
<td></td>
</tr>
<tr>
<td>9. Bladder or Bowel Incontinence Without a Toileting Plan</td>
<td>Residents without toileting plan on most recent assessment</td>
<td>Residents with frequent incontinence or occasionally incontinent in either bladder or bowel on most recent assessment</td>
<td></td>
</tr>
<tr>
<td>10. Incidence of Indwelling Catheters</td>
<td>Catheter on most recent assessment</td>
<td>All residents on most recent assessment</td>
<td></td>
</tr>
<tr>
<td>11. Prevalence of Fecal Impaction</td>
<td>Residents with fecal impaction on most recent assessment</td>
<td>All residents on most recent assessment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain 6: Infection Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Prevalence of Urinary Tract Infections</td>
</tr>
<tr>
<td>13. Prevalence of Antibiotic/Anti-infective Use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Domain 7: Nutrition/Eating</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Prevalence of Weight Loss</td>
</tr>
<tr>
<td>15. Prevalence of Tube Feeding</td>
</tr>
<tr>
<td>Domain 8: Physical Functioning</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>16. Prevalence of Bedfast Residents</td>
</tr>
<tr>
<td>17. Incidence of Decline in Late Loss ADLs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18. Incidence of Improvement in Late Loss ADLs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19. Incidence of Contractures</td>
</tr>
<tr>
<td>20. Decline in Late Loss ADL Function Among Unimpaired or Moderately Impaired Residents</td>
</tr>
<tr>
<td>Domain 9: Psychotropic Drug Use</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>21. Antipsychotic Use, in the Absence of a Psychiatric Diagnosis</td>
</tr>
<tr>
<td>22. No Anti-psychotic Use on Admission or Re-Admission, but With Anti-psychotics on subsequent assessment (Exclude residents with a psychiatric diagnosis/symptom at most recent assessment)</td>
</tr>
<tr>
<td>23. Antipsychotic Daily Dose in Excess of Surveyor Guidelines Among Residents With Organic Mental Syndromes</td>
</tr>
<tr>
<td>24. Antianxiety/hypnotic Use</td>
</tr>
<tr>
<td>25. Hypnotic Use on a Scheduled Basis or PRN More Than Two Times in Last Week</td>
</tr>
<tr>
<td>26. Use of Any Long-acting Benzodiazepine</td>
</tr>
<tr>
<td>Domain 10: Quality of Life</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>27. Prevalence of Daily Physical Restraints</td>
</tr>
<tr>
<td>28. Prevalence of Little or No Activity</td>
</tr>
<tr>
<td>Domain 12: Skin Care</td>
</tr>
<tr>
<td>29. Prevalence of Stage 1-4 Pressure Ulcers</td>
</tr>
<tr>
<td>30. Incidence of Pressure Ulcer Development</td>
</tr>
<tr>
<td>31. Insulin-dependent Diabetes With No Foot Care</td>
</tr>
</tbody>
</table>
EDMUND S. MUSKIE SCHOOL OF PUBLIC SERVICE educates leaders, informs public policy, and broadens civic participation. The School links scholarship with practice to improve the lives of people of all ages, in every county in Maine, and in every state in the nation.